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ABSTRACT

The statistics of acoustic signals propagated to long ranges in the ocean
are investigated in detail in this thesis. The phase random model of multipath
propagation is extended to include finite bandwidth and/or modulated sources as
well as multiple source configurations. The theoretical analyses include the
derivation of many new probability density functions for these new cases as well
as for the single narrowband source.

The probability density function for k, the time rate of change of the leve
in decibels for the single narrowband source is derived. P-(i) depends only upon
V2 , the single path mean square phase rate, which can be related to certain ocean
.dynamical processes. The analysis of finite bandwidth and/or modulated sources
"reveals that the amplitude and amplitude rate densities (including Pi()) are
independent of the finite bandwidth and modulation effects, but the Bensity of
the time rate-of-change of the multipath phase ;is sepsitive to these effects.
'Thus, fitting P-(A) to histograms from data to find v is the preferred method
for determiningAthis important parameter. Bandwidth effects in ;can be neglected,
however, if B<<2v where B is the signal bandwidth. The analysis also reveals a
potentially powerful technique for determining parameters of the modulation or
bandwjjth of a source from the received multipath signal.

The analysis of multiple sources, applicable to noise problems, includes
important approximations to densities which are intractable analytically, and
would involve significant computer time to solve exactly. In addition to studies
of the amplitude densities, significant progress has been made in solving for
the amplitude rate densities and the joint densities of amplitude and amplitude
rate.

In addition to providing valuable confirmation of much of the theoretical
analysis, a computer simulation of phase random multipath propagation also con-
firms that for N > 4 paths phase random multipath conditions begin to closelyI
approach the asymptotic conditions for N -.

Data at 220Hz and 406Hz received by drifting sonobuoys in the Atlantic at
approximately 300 km in range were analyzed. Values of v2 obtained support an
internal wave model for the relevant dynamical process. The modulation theory
uncovered a heretofore unrecognized modulation in the data due to an error of
the Doppler tracking system. Predictions of crossing rates including this modu-
lation effect are in good agreement with the data.

Other data at 15Hz and 33Hz propagated to ranges between 250 km to 450 km
in the Pacific in which deliberate modulation was introduce(, once again provide
excellent confirmation of the theory. Measured values of v vary significantly
from run to run and are not consistent with an internal wave model, indicating
some other mechanism (i.e., tidal, rough scattering) must account for the fully
saturated phase random nature of the data. The technique for determining modula-
tion parameters was used, and for the 76 modulated runs analyzed, the average
error in determining the actual bandwidth of the modulation of the source from
the received multipath signal was 8%.
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ABSTRACT

The statistics of acoustic signals propagated to long
ranges in the ocean are investigated in detail in this
thesis. The phase random model of multipath propagation
is extended to include finite bandwidth and/or modulated
sources as well as multiple source configurations. The
theoretical analyses include the derivation of many new

2probability density functions for these new cases as
well as for the single narrowband source.

The probability density function for A, the time
rate of change of the level in decibels for the single
narrowband source is derived. P (A) depends only upon v2,
the single path mean square phasA rate, which can be
related to certain ocean dynamical processes. The analysis
of finite bandwidth and/or modulated sources reveals that
the.amplitude and-amplitude rate densities (including
P*(A)) are independent of the finite bandwidth and
m;Adulation effects, but the density of the time
rate-of-change of the multipath phase $ is sensitive to
these effects. Thus, fitting P (A) to histograms from
data to find v2 is the preferreA method for determining
this important parameter. Bandwidth effects in $ can be
neglected, however, if B << 2v where B is the signal
bandwidth. The analysis also reveals a potentially
powerful technique for determining parameters of the
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modulation or bandwidth of a source from the received
multipath signal.

The analysis of multiple sources, applicable to noise
problems, includes important approximations to densities
which are intractable analytically, and would involve
significant computer time to solve exactly. In addition
to studies of the amplitude densities, significant progress
has been made in solving for the amplitude rate densities
and the joint densities of amplitude and amplitude rate.

In addition to providing valuable confirmation of
much of the theoretical analysis, a computer simulation
of phase random multipath propagation also confirms that
for N > 4 paths phase random multipath conditions begin to
closelj approach the asymptotic conditions for N -.

Data at 220Hz and 406Hz received by drifting
sonobuoys in the Atlantic at approximately 300 km in range
were analyzed. Values of v1 obtained support an internal
wave model for the relevant dynamical process. The
modulation theory uncovered a heretofore unrecognized
modulation in the data due to an error of the Doppler
tracking system. Predictions of crossing rates including
this modulation effect are in good agreement with the data.

Other data at 15Hz and 33Hz propagated to ranges
between 250 km to 450 km in the Pacific in which deliberate
modulation was introduced, once again provide excellent
confirmation of the theory. Measured values of v2 vary
significantly from run to run and are not consistent with
an internal wave model, indicating some other mechanism
(i.e., tidal, rough scattering) must account for the fully
saturated phase random nature of the data. The technique
for determining modulation parameters was used, and for
the 76 modulated runs analyzed, the average error in
determining the actual bandwidth of the modulation of the
source from the received multipath signal was 8%.

Thesis Supervisor: Ira Dyer

Title: Professor of Ocean Engineering
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INTRODUCTION

Acoustic signals propagated to long ranges in the

ocean, tens to hundreds to thousands of kilometers, via

all modes of propagation including surface ducts, the

deep sound channel, or sea-surface and ocean-bottom

reflections exhibit fluctuations in amplitude and phase

which are now recognized to be dominated by the multipath

interference of the acoustic field. The statistics of

these fluctuations as well as their relationships to the

dynamics of the ocean has been one focus of recent research

in understanding this important physical process. The

optimum design of sonars (e.g., the receiver operating

characteristics), underwater communications devices, and

in fact any system which operates via acoustic

transmission in the sea depends upon the knowledge of the

statistical behavior of these transmissions.

The recognition of the dominance of the multipath

structure on the statistics, or the assertion that long

range multipath acoustic propagation in the ocean can be

modelled as a phase random process has been established

only within the last ten years, although the phase random

process or random walk problem has been under study since

Rayleigh (1880) [i], and is one of the classical problems

of mathematics and physics. Bergmann (1946) [2] was among
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the first to speculate that observed fluctuations in

signal intensity might be attributed to the interference

of many paths summing in random phase. Dyer (1970) [3]

formally applied the theory of a phase random process or

random walk problem to long range acoustic multipath

propagation in the ocean, and was the first to investigate

the statistics of log transformed variables. Dyer also

showed that even in the presence of scattering randomness

multipath interference would dominate the statistics.

This research in fact indicated a basic shift from the

scattering models of earlier research which are more

appropriate for high frequencies and short ranges when

multipath effects are less important. Dyer also proposed

a model of distant shipping noise based upon the precepts

of phase random multipath propagation and continued this

research in a later paper (1973) [4], and most recently in

Mikhalevsky and Dyer (1978) [5], results of the latter

being included as part of this thesis. This model,

appropriate to distant shipping noise, assumes the noise

in a band is dominated by narrowband lines discrete in

frequency.

Mark (1972) [6] investigated the statistics of the

multipath propagation of finite bandwidth signals.

Employing a systems approach, he derived general expressions
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for the mean and variance of the received signal energy

in terms of the correlation function of the time varying

impulse response of the medium. He also showed that the

gamma or Erlang probability density function is often a

good approximation to the real pdf of the received

energy. Much earlier, Nakagami (7] had noted the

utility of an appropriately transformed Erlang pdf in

approximating the densities of received HF electromagnetic

radiation undergoing rapid fading, indicating the

broadness of scope of the phase random model and its

general applicability. All these efforts, however,

concentrated on the amplitude (or related quantities) of

the signal and did not address the amplitude rate or

phase rate of the signal.

Longuet-Higgins (1975) (81 in connection with research

on random sea surface waves (another phase random process)

introduced the joint pdf's of amplitude, amplitude rate,

phase, and phase rate as well as the marginal densities to

the growing body of knowledge of phase random processes.

It remained for Hamblen (1977) [9] to formally extend the

phasq random analysis to the multipath acoustic propagation

process, incorporating the results of Longuet-Higgins (81

and also S.O. Rice (101 whose extensive research on noise

statistics were also applicable to the long range acoustic
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propagation problem. Hamblen [9] also established the

dependence of the probability density functions for a

single narrowband acoustic source on the two parameters

a, one-half the mean square pressure at the receiver,

and V2, the single path mean square phase rate. He also

verified the basic results with data from an ocean

acoustic propagation experiment.

Concurrent with the development of the phase random

model of multipath acoustic propagation, much research

was and is being conducted on another important aspect

of the problem, namely to discover what ocean dynamic

processes are the driving mechanisms and how parameters

of these ocean dynamic processes are related to the

parameters of'the acoustic field, a2 and v2  Most

notable perhaps is the recent research of Dyson, Munk,

and Zetler (1976) [11] who have proposed a theoretical

model relating the dynamics of internal waves in the ocean

to the fluctuation of the acoustic field. However, this

model appears to have serious limitations at low

frequencies. In fact, little research has been reported

on the low frequency cases.

In the following paragraphs I will introduce the

research reported on in this thesis. There are three

basic areas in which significant progress has been made in
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understanding the statistical behavior of multipath

acoustic propagation: (1) the single narrowband source,

(2) finite bandwidth and/or modulated sources, and

(3) multiple sources or receptions. An extensive

analysis of data from acoustic experiments in the ocean

as well as a computer simulation of phase random multipath

acoustic propagation not only increase our confidence in

this new understanding, but reveal new information for low

frequency signals about the driving mechanism of v2 , the

single path mean square phase rate.

The Single Narrowband Source

I derive for a single narrowband source the pdf's

for the time rate of change of the sta (short time average)

mean square pressure, X, and the time rate of change of

the level in decibels, A, results which are unique to this

thesis.. The pdf for A is independent of a2 and is a
V 2 

1
function only of v2. This result is of particular

importance as it affords a method of measuring v' from

ocean acoustic data without error due to uncertainties in

the signal carrier. Included in this analysis are the

joint densities P ,(X,) and PA,(A,A) and their

characteristic functions, also unique to this thesis.

This analysis in fact completes the family of first order
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and joint pdf's for a single narrowband source.

Appendix A contains a list of all the first order pdf's,

their characteristic functions, means, and variances as

found by me, and earlier as found by others, so that a

complete set can be referred to.

Finite Bandwidth and/or Modulated Sources

Many acoustic signals of interest received in the

ocean have bandwidths which are not narrow, and carriers

that may not be stable or may be deliberately modulated.

In applying the phase random model of multipath acoustic

propagation, it is necessary to assume that the spectrum

of the received signal is narrow, and that in homodyning

the signal the spectral mean is zero (8,91. Clearly,

the signals mentioned in the beginning of this paragraph

would violate these assumptions. I show, however, that

the amplitude and amplitude rate statistics (including

PA(A) are independent of finite bandwidth and/or carrier

modulation effects. The multipath phase rate, ;, is

sensitive to these effects, and it is the pdf for which

must be modified.

The pdf for ; is in fact a function of v2 , as well as

the bandwidth, and/or parameters of the modulation.

Bandwidth effects can be neglected when B << 2',, which is
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therefore a criterion for what is meant by "narrowband"

in the ocean. Furthermore, this analysis reveals a

method of separating and understanding the source induced

modulation independent of the ocean induced modulation

or vice versa. In addition to solving for the pdf's of

; in the presence of bandwidth and/or modulation, I solve

for the crossing rate statistics of phase for these cases

as well.

Multiple Sources or Receptions

The statistics of the received signal amplitude and

amplitude rate when there is multiple source structure

depends on the exact nature of the received multi-source

signal and the analysis performed by the receiver. I

consider two basic cases. First, I assume the

receptions (one per source) are disjoint in frequency in

the analysis band and can be separated and summed

incoherently (that is, without concern for phase). I

assume, therefore, that each of the receptions/sources

are independent, thus the analysis band should not include

harmonics of a signal already in the band. This type

of analysis is motivated by the structure of distant

shipping noise [4,5]. For the second case, I consider

the receptions to be at or so close in frequency that they
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must be summed coherently. Note that the dividing line

between. case one and case two depends upon the resolution

of the receiver. Most all of the pdf's I derive for the

amplitude and particularly the amplitude rate for these

cases are unique to this thesis. Where I have been

unable to derive the exact pdf analytically or in which

the exact solution is extremely time consuming to obtain

even with the aid of a computer, I have in most cases

found an approximation based upon Edgeworth's series.

This approximation is shown to be excellent in the main

lobe of the density but performance is degraded in the

tails.

I use the analysis of coherent sources to model the

effect of ocean ambient noise on the pdf's for a single

narrowband source. The pdf's are expressed in terms of

the SNR (signal to noise ratio). In light of this

analysis, I am able, as well, to extend with only slight

modification all the frequency disjoint multiple source

solutions to include the cases when both coherent and

disjoint source structure is present in the analysis band,

or for noise which is continuously distributed over the

passband.

The reader is forewarned that the sections of this

thesis on multiple sources (see Table of Contents) are

_ kn
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lengthy and in many cases quite tedious due to the

complexity of the analysis. Table III is provided (page 143)

to aid in understanding the organization of this material

and to aid the reader in finding that analysis which

is most pertinent to his problem. The analysis of the

statistics of multiple sources which is not immediately

motivated by any current ocean acoustics problem of

interest is presented for completeness with potential for

application to future problems, even perhaps in areas

unrelated to acoustics. For example, the solutions for

P(X) , using the terminology of Qu;euing Theory, are in

fact the pdf's for the interarrival times of cascaded

Poisson processes which are unique to this thesis and,

to my knowledge, not to be found in Qaeuing Theory

literature.

Computer Simulation and Data Analysis

A computer simulation of phase random multipath

propagation is developed to assist in and to check the

theoretical analysis. The simulation demonstrates the

independence of the exact nature of the pdf for en

(the single path phase) to the statistics when there are

at least four propagation paths from the source to the

receiver. Of importance is the confirmation of the

- - I _
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generally accepted criterion that N > 4 paths results in

an almost fully saturated phase random process, and pdf's

for the limiting case as N - = suffice. The simulation

allows me in Appendix C to compare the theoretical

pdf's, many which I derived, for N < 3 to the computer

generated histograms with excellent results.

I analyze data from two ocean acoustic experLments.

One was conducted near Eleuthera in which two CW signals

at 220Hz and 406Hz were transmitted approximately 300 km

northeast towards Bermuda and received by drifting

sonobuoys [12]. These data support the theoretical

pdf's derived in Chapter 1. Furthermore, the modulation

theory uncovered a heretofore unrecognized modulation

in the phase rate data due to errors in the sonobuoy

tracking system that has dramatic results on the

statistics for the phase crossing rates. These data are

also consistent with a model of phase random multipath

propagation resulting from the interaction of the acoustic

field with internal waves [11].

I also analyze data taken in the Pacific in 1973

known collectively as the CASE experiment [13] in which

CW signals at 15Hz and 33Hz were propagated to ranges

varying from 250 km to 450 km. These data were

deliberately modulated and the predictions derived
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theoretically in Chapter 1 are once again confirmed. The

analysis I used was capable of determining the bandwidth

of the modulation from the received multipath signal

with an average error of 8%. Where previously there had

been some problems in the consistency of the data with the

phase random model, the modulation theory successfully

lays these problems to rest. These data, however, are

not consistent with the internal wave model and this

analysis has brought sharply into focus a shortcoming

in our current understanding of the driving mechanisms of
2 , particularly for low frequency signals. Correlations

I have derived appear to support, though tenuously without

additional research, either a rough scattering or tidal

mechanism to account for the fully saturated nature of

the CASE data.

In Appendix D, the effects of amplitude parameter

variation are discussed. This analysis is aimed at

uncovering the effects of temporal variations in the

total energy of the signal during the observation period

on the statistics of the received multipath signal.

. . . ..1

: r i , J



-34-

CHAPTER 1

ANALYTICAL TREATMENT

1.1 Single Narrowband Source

For a narrowband signal the phase-random model of

multipath acoustic propagation predicts that the sta root-

mean-square pressure, p, is a Rayleigh distributed random

variable [3,9], its rate, , is Gaussian (9], the multipath

phase, 0, is uniform, and its rate, $, is distributed

according to a density first given by M.S. Longuet-Higgins

[8,9]. The transformation X = pz yields the density for

the sta mean-square pressure which is exponential (3],

and following Dyer (3] the transformation A = 10 log X
10

gives the density for the level in decibels which is

Log-Rayleigh. To complete the family of first order

densities for a single narrowband source, I have derived

the densities for and A.

1.1.1 Derivation of P -() and P (A)
A -A

For phase random multipath propagation the joint

density of the sta rms pressure p and its rate p is given

by [8,9],

P ,(p, ) - exp F- -- (1.1)
0122, V~1 ~ 2
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where v2 is the single path mean-square phase rate,

a N r z (1.2)

and N is the number of propagation paths, r is the single

path amplitude, and u is the long-time average mean-square

pressure.

For X = pz we have = 2p . To find the pdf

(probability density function) for I first solve for

the cumulative distribution function E141 of by

integrating over the joint density of p and ,

Equation (1.1).

P<()= Pf ,(p,j)dpdO , > 0 (1.3)
0 -o

The pdf for will be given by _ P< (k). Combining this

result with Equations (1.1) and (1.3) differentiating

under the integral sign and integrating once, I obtain

the result

P 1 exp 0'1 , -o< <o (1.4)

4al'V 2a 2 V

~- ~- w - - - -J~ ~o
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The absolute value results from the analysis for i < 0.

Equation (1.4) is the Laplace pdf CL.1. The variance of

is given by

a I 8a 4V 2

The pdf for X is solved in the same manner. First I

find the pdf for C where y = lnp2 and thus 2/p,

therefore,

P - P fPf)dd , > 0 (1.5)
0 0

As before, I differentiate under the integral sign and

perform the. remaining integration to obtain

P.(j) 1/2 v , (1.6)

S3/2

Making the final transformation A = e, where

- 10 logi0e - 4.34... (this notation will be adhered to

in the remainder of the thesis), I obtain the final result
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P' = / (1.7)

This density is in fact of the same form as P$($) (see

Equation A8 in Appendix A). The second moment of this

density is infinite. Physical insight of this phenomenon

can be obtained if one visualizes the random walk problem.

The amplitude of the vector is p and its phase . When

the amplitude of p goes to zero as in a deep fade it is

easily seen that the phase can undergo very rapid changes.

Likewise because A = e2o/p it is also clear that A can

assume very large values when p is small. Thus both %

and are governed by the same form of pdf and their

variances are infinite. It is also noteworthy that

while the pdf's for and depend upon both a1 and v,

Equation (1.7) depends only on v.

1.1.2 Joint Densities of Amplitude and Amplitude Rate

and.Crossing Rate Statistics

In order to complete the family of joint densities

of amplitude and amplitude rate for a single source, I

have derived P ,(X, ) and PA, (A,A). This analysis also

provides an alternative method for deriving P.( ) and

P (A) to check the calculations of the previous section.

in addition, I derive the two-dimensional characteristic

-- - - --- ---. ~-~7
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functions [L41 which will be of significant importance when

I investigate multiple sources.
For X= we have p = x. / and = 2 n

order to solve for P , ()(a) I make a two dimensional

transformation on P ,5(p,5) (Equation 1.1) as follows:

1/2 1 -1/2

x x - a P. (p,5)dpd4 (1.8)

By differentiating under the integrals in Equation (1.8)

I obtain

1 .2Vp,(X, )  a1 = 1 exp[- 2a -z
4X3/ 202.2 8Xa12v

x > 0, and - < <= (1.9)

The two dimensional characteristic function or two

dimensional Fourier transform can be defined as

___________________________________________________________________"

--- 9,!U- .. -
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M (w, C) P fX 1, (* 2 ) )e dX.dX2  (1.10)

For P *(xi)

Mx'k(W'a) f COf 0 (, .ewX( 'G d~d (1.11)

Performing the double integration yields

X' 1 - i2a 'w + 4C vaa(.2

Recalling that y = mX, we have X. = ey and =

Thus,

ey 'e

P (M 3 f J~l P i(X,i)dXdi (1.13)
0 -00

As before I differentiate under the integrals, and make the

final transformations A e y and A = to obtain,
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exp ( 3 A) 2
P AA (A,') exp -exp([ - + }

-c<A<=, and --<A<a (1.14)

The two dimensional characteristic function of PA,(A,.)

.(Equation 1.14) is

MAA(w'a) =2evIo! (8&Ijaa12 V2)w K +iew C2evIari)

* (1.15)

where K (x) is the modified Bessel function of order z.

Performing the integrals over X and A in Equations

(1.9) and (1.14) respectively yields the marginal densities

of and A which are given by Equations (1.4) and (1.7)

respectively as expected.

Following Rice [10] and using Equation (1.14) I

derive the mean axis crossing rate for the amplitude of

the signal expressed in decibels.

G(A) -ZF APA A)dA -['L\=A o ]  (1.16)

A7 .o'
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Thus,

Aexp 3 .A) A 1 + A
G(A) J.- Te-. exp- -exp(.-2)1 ( - IdA

0 4ca 1 
3 v '7- 2a1 selallvl

and

A 0A
0 Fxp exp(-)1

G(A) -vx(- exp (1.1]
o 17 2a1

If we transform Equation (1.17) to determine the axis

crossing rate for p z- exp(A,/2e)

G2( p 0  Vx PG( ~ 72 2 x I(.8

Equation (1.18) was previously obtained by Dyer and

Shepard (15], and Hamblen (9].

1.2 multiple Sources

in this section the statistics of the amplitude and

amplitude rate variables are analyzed when the source
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structure consists of many independent acoustic generators

distributed at various frequencies across the bandwidth

of the receiver. It is assumed that propagation from each

source is phase random and multipath. An initial assump-

tion is also made that each source radiates at a different

frequency. This problem is applicable to the case of deep

ocean ambient noise due to distant shipping [4]. For

this case the spectrum of ship radiation is assumed to be

dominated by lines disjoint in frequency, so that each

ship contributes as many independent sources as

there are lines within the observational bandwidth.

(Note, the observational bandwidth cannot be so large as

to include harmonic s.) Henceforth line and source will

be used interchangeably. Furthermore, the analysis

assumes that the Fourier components of the received

signal over the observational bandwidth are squared and

summed. Thus, by Parseval's theorem it is the square

of the signal amplitude, in this case X = p2 which is
L

summed for each source, or Xtotal = n1l Xn for L sources.

As noted in Reference (4], this model breaks down when

sources cannot be separated in frequency, and then the

model must be modified to include the effect of two or

more sources which may be radiating at the same frequency.

This coherent problem is treated in Section 1.2.3.
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1.2.1 Amplitude Densities

Dyer [4] first investigated the amplitude statistics

for the multicomponent case and developed the framework

for the problem which will be followed here. Three

categories are defined: (a) all line components, L in

number, arrive with the same long-time average intensity;

(b) all line components, M in number, arrive with different

intensities; and (c) N groups arrive, each with Li ecual

intensity components. As an example, Case (c) was

applied in Reference [4] to noise as might be measured

at low frequencies in deep water near Bermuda.

As pointed out in Reference [4], and as will be

shown in Section 1.2.1.3, use of the models describing

line component noise often entails considerable

computational tedium. This complexity often motivates

adoption of approximate methods, which will be discussed

in Section 1.2.1.4. Cases (a) and (b) are treated in

Reference [4]. Exact solutions for N = 2 and N= 3 of

Case (c) are derived in Sections 1.2.1.1 and 1.-2.1.2

respectively. It is true that the exact solutions of

N- 2 and N= 3 may be of little practical value as most

*cases of interest will probably contain many more than

three groups. The analysis is performed, however, to

build the theoretical framework of this problem, perhaps
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enabling someone else to solve it exactly in all

generality, and more importantly in relation to this

thesis research these exact solutions will provide a check

for the approximate solution which is presented in

Section 1.2.1.4.

1.2.1.1 Exact Solution for N= 2, Case (c)

Consider L line components, each with the same

long-time average mean square pressure u. The

probability of the sta mean square X is C A ,

aL L-1 e-aX
PXLE 00 x > 0, a > 0

L = 1,2,... (1.19)

where a = 1/u, the mean U = L'p , and the variance
XL

L LU2 _ iL2 /L. Equation (1.19) is the Erlang or
XL XL

gamma pdf (see Appendix B).

Let X1 and X2 be distributed according to

Equation (1.19) but with different ui and different Li

(i-1,2). Further, let 2X = XI+X 2. Then
x

P (x) =I P ( 2 (X- )d;. If we make the change of
0
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variables UXt,

a 1(X)=1 2 LeaX L2+Ll 1 j L1-l (l-t)L L2-1etX(a 2-al) d
Zxr 1(r.,) r (L2 ) fa

. .. (1.20)

The integral is the confluent hypergeometric function

defined in its integral form [16,17 1:

1
M(a,a,Z) = rm - f eZt ta (l-t) -a-l dt (1.21)

r(d-a)r(a)0

This is a well tabulated function [18,19,20] alternatively

defined by Kummers series (absolutely convergent):

MWa,S,Z) - 1 + + + +.. I - + .. (1.22)
6 62 ('5 n

where (a), = a(a+1)(a+2) ... (a+n-1), (a)O 1.

Applying Equation (1.21) to Equation (1.20) 1 obtain
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the desired result:

a Lla2L2XL2+Ll-1-Xa2
P 2X WX L M [LI,L1 +L2 ,X (a2-a,)] (1.23)r (L1 +L2 )

with

2X = +"X = LI4I + L2U2

2 a 2~~ 2 LI

If a1 = a2 then as expected, Equation (1.23) reduces to

Equation (1.19) with L = L1 + L2 , upon noting from

Equation (1.22) that M(c,6,0) = 1.

To obtain the density of the level in dB I make the

now familiar transformation A = £ inx in Equation (1.23):

A(A -alLla 2L2(A)

P2 (A) - a ILI +a 12 M [LI,LI+L2 , (a2-a1 )e(A/e)
2 exp(L1 + L2)

exp A(L + L)- a2 e (We) (1.24)

E 2 1
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The statistics for A are:

v- eCln 2 - y + S1 (Ll+ L2 ) + Ql(a 1 a 2 L,,L 2)]

(1.25)

A~ ~ -z~- 2 (aLoa2L2 )- {( 11 21 11

where

L-1
S1 (1) -0, 51 (L) = 1 1

S (1) =0, S (L) =L-11

W= 1

aL1 (L) a-a 1lnk-i

allL, (L )na2-a1 nM+n-1k-1
Q2 (a11 a2,Lj1 L2) 2 2  n!

nd2 2 2knM+l p-M

ON d&
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where M -= + L0and y _BEuler's constant - .5772...

Note that if a1 I a 2, Equ.ations (1.25) reduce to

Equations (4) of Reference [4] as expected.

For non-integer values of L1and L2 . Equations (1.25)

can be expressed as follows:

[+ 1  1L) n a
lnU.2 + n-( +L +n)]

4Aeajl1 n! E~C 2+L1 n

(1.26)

a22/. L) 2 a [,(L +L +n) -1na 21aA .A a 2 n: n! a 2 212

+ 1(L +L 2 +n)}

where

*~(x) is the Euler Psi function [21]

and where

d
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Equation (1.23) can also be expressed in terms of the

incomplete gamma function (22,23] which is a special case

of the confluent hypergeometric function.

1.2.1.2 Exact Solution for N- 3, Case (c)

I now consider three groups with Li (i= 1,2,3) sources

in each group. Let 3;( = X1 + )2 + )3 = 2x +x3 where the

Xi (i - 1,2,3) are distributed according to Equation (1.19)

(with different means and Li) and 2X is distributed

according to Equation (1.23). Then:

P3X (X) = ] X (;) P X(X-)d

As before, let ; = Xt and

L1 L2 L3 L1+L2+L3-1 -a3xaI a 2 a3  x e

P (X) 3 I (1.27)
3X  r(L1+L2) r(L3)

and
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LI L3_1tLl1+L2_ 1et X (a 3- a 2 )

f (l-t) L•e M [LI,L 1 +L2 ,tX(a2 -a 1 )]dt

0

. (1.28)

Equation (1.28) is evaluated by expanding the confluent

hypergeometric junction in its series form (Equation 1.22),

and integrating term by term. When I combine this

result with Equation (1.27) I obtain the result

L 1 L2 L3  L1+L2 +L3 -
1  -a3X Xn (a n (L

S( a a 2 a 3  e 2 1 n
Sr(L1 +L2 +L3 ) n=0 n! (L1 +L2 +L3 )

M[L 1 +L2 +n, L1 +L2 +L 3+n, x(a 3 -a 2 )] (1.29)

with

3) " L 11 + L2 "2 + L3U 3

a2  L LI + L "1 2 + L
3X

Deriving numerical resu. s from Equation (1.29) is

straightforward by rewriting the summation



n 0 Cnmn  (1.30)

where

=X (a 2 -a I ) L1 +n-1
fn f n LI+L2 +L3 +n-1 C 1  Co1 (1.31)

and [18],

b (1+b-z) b (b-1)
mn  n_1 + Mn_ 2. (1.32)az az

In these I define mn M(a+n, b+n, z) and, a - LI+L 2,

b L,+L 2+L3, and z = X(a 3 -a 2).

From Equation (1.29) the density of the level in dB

is obtained as before:

P (A) - eY (ey) (1.33)
Te sc o ly = A/e

The statistics of the level are:
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3A = C[lnu3 - Y+SI(L1 +L 2 +L3 ) + R1 (al,a 2 ,a 3 ,L 1 ,L 2 ,L 3 )]

A = .2TI -S 2 (LI+L2 +L3 ) - R (a 1 a2 ,a 3 ,L 1 ,L 2 ,L 3 )

+ R2 (ala 2 1 a 3 , L 1 , L 2 , L3 )] (1.34)

where:

L, L2  p

R (al,a a 3 ,L 1 ,LL 3 ) = a2 ( ta2 a-1
1 1 1 3 -3 a31 p-- 0 P! a3 j

(L1+L2 +P n -a2I ~- 1
[ n! a 0 L,+L,+L 3 +k

n= 0 a3 J

for p+n > 0, and

R 2 (aa 2 , a 3 'L 1 ,L 2 , L 3 ) = 2[33 P a a

(LI+L 2+P)n a3-a21 nX+pn1 Z-1 1
n 0 3 Z=4+I =1
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for p+ n > 1, in which OZ= L1 +L 2+L3 .

Note that for both N = 2 and N = 3 one can judiciously

choose which ai,L i will be designated al,L 1 ; a2 ,L2 ; or

a3,L 3 so as to insure the fastest convergence of the terms

involving infinite series.

1.2.1.3 Solution for Arbitrary N, Case (c)

In this section I will derive an expression for the

pdf of the sta mean square pressure X, for an arbitrary

number of groups N, using Laplace transform techniques.

Let

N
NX =n=Xn (1.35)

n=1

where NX denotes the random variable whose pdf we seek

and the X n are Erlang distributed random variables,

distributed according tQ Equation (1.19) with

arbitrary order Ln. The Laplace transform of Xn is

(S) s > -a (1.36)Xn s + a n  n"

where a = 1/1n . From the properties of Laplace transforms

.. ...
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and independent random variables

NN a n  L nx(S) 1nl1( + an (1.37)

NX n=1 5  n

and thus,

N an Ln

(x Wfj esa ds (1.38)PNX  2rjfjn=l +an

Though Equation (1.38) is attractively compact, it is

computationally tedious for most cases of interest, i.e.,

large N and large Ln as you might expect with many ships

and many lines. To carry the analysis a bit further, i

make a partial fraction expansion of Equation (1.37),

N Ln N n Cnk
x(S (s II an  I I (s + a n) ' 1.9

= n-i n= k=1 n

It is clear from this expression that P (X) is a linear
NX

sum of weighted Erlang distributions, and the problem is
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reduced to finding the coefficients Cnk. I take the

inverse transform of Equation (1.39) by applying the

calculus of residues to obtain

Cnk { (k ds k-1x N } s=-a n

and finally,

N Ln N Ln CnkX k-l e-anX
P (X) = ( a n z z (1.41)
NX n-l n=l k=l

The generally intractable nature of Equation (1.40) leads

to the introduction of approximate methods discussed in

the following section.

1.2.1.4 Edgeworth's Series Approximation, Case (c)

As before,

N

NX = Xi

where the Xi are independent random variables distributed

"+ I ,+.. ,,-t
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according to Equation (1.19) and in general with

different long term average means ui and different

number of line components Li. Although P NX(X) cannot be

solved exactly for N > 3 without considerable computational

tedium, it can be approximated in the main lobe, and as

we shall see, quite accurately and easily by an

Edgeworth's series D4]:

P (X) Z 1 Y Z(3) + (4)
NX a X Ts4-e

+ 1. 0 K (5)+ s () - S_7
a5X

37 z(7)
- 7-- 7se z 7 ( )

280 Y Z () + ... terms in highet order

moments} . . .(1.42)

where
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'NX 1 -=, Z ( ) = e
NX (2w) 1 / 2

Z ( n ) ()= nth derivative of the Gaussian pdf,

3 3

y coefficient of skew X -13 (1.43)
3 3
X X

i-i K4
Ye B coefficient of excess = 3 = - (1.44)

x x

n.X -- nth central moment, and

thK n order cumulant or semi-invariant.n

The point-by-point error in the approximation of

Equation (1.42) is of the same order as the first term

neglected (14].

A computationally more efficient expression of

Equation (1.42) can be derived by actually taking the

derivatives of Z(E) as indicated with respect to E and

collect terms in powers of E. I have used only the first

four terms in Equation (1.42) and as will be demonstrated

later, this will be entirely adequate for practical
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computations.

P e y
NX Z 1 .-

NX

- SYS Le Z + -- 3 -+ -+8 '4 3!". 4!T.

+ 4 6, (1. 45)

It should be noted that because Equation (1.45) is an

approximation, negative values may be obtained for some

regions in the tails. In fact, the Edgeworth's series

performs best in the main lobe of the density and wor-se

in the tails. The mean and variance is respectively

(evoking the properties of sums of independent random

variables 141):

N
gNX i=l i i

(.6

N

az = Lili 2  (1.47)NX il
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For the gamma pdf (14]:

K- unLr(n) (1.48)

Furthermore, for a sum of independent random variables [14]:

K = lKn + 2Xn + 3.Xn + ... + NKn (1.49)

I use Equations (1.46) through (1.49) to obtain the

coefficients of skew and excess for P (X):
NX

1 N

Ysi~ 2L.i , (1.50)

0 i li

x

Y. and y. are zero for the Gaussian pdf and attain maximum

values of 2 and 6 respectively for the exponential pdf

(which is the case of N-1 and L-l).

Before examining the nature of ys and ye more closely,

let me return to Equation (1.42) and make the log

transformation to obtain the Edgeworth's approximation for
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the level in dB:

N A {Z 31 Z.

. . . (1.52)

or alternatively,

P ( A)  1 - eA/c Z(T) i+ :e I I n +  1 ") n2

N NZ

+ Y l I3+ Ye. -. -4-y-2 6, (1.53)

where

1N = exp (A/) -NX

As a result of the fact that the transformation

A - 10 logl 0X is nonlinear, the statistics of A cannot be

found without exact knowledge of PN(.1):

N{
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N A = E f lnx P DI(x)dx

(1.54)

a2 + UA M l nf z NXdx
N N 0 n NX0

Using Equation (1.41) in the previous section and inter-

changing the order of summation and integration I obtain:

Ln

N N Ln kiO(C na~nCnk ln- k-l -nd

N n=1 k=1 (k-f) xX eanXd
0

(1.55)

N N L n Cnkzk 1 -nd

a 2 + U 2 (e2 n aLn)n N (k (lnX)zX e anXd
N nl fl k=1 ki! -

Evaluating Equations (1.55) yields [241:

N N Ln C

(C r a Ln ) I I nk [(k) -n a]
Nnl n n-i k=1 ak

n
(1.56)

L c

a A +;AA k n n) (k) 1n a . ..+ )
N Nn=1 n=l k-f
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Though Equations (1.56) are exact, they are predicated on

the knowledge of the Cnk's given by Equation (1.40),

which in turn motivates an approximate solution.

Unfortunately, direct integration of the Edgeworth's

series is not possible because term by term the integrals

diverge. An approximation can be made, however, using

the first term only, that is, to integrate the log

transformed Gaussian. Thus,

4NA f l nx exp Y dX

X o 2a

(1.57)

a N A + A  2-A 2 o(In x ) exp - dX
N N L 17 2a2

x 0 x

The integrals in Equations (1.57) are not straightforward

but can be evaluated as follows. First, the square in the

exponential is expanded, and the constant term removed

from under the integral sign. Second, the change of

variables X = u1 /2 is made:
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e u inr exp(- - + r) v')du
NA 22a f- 2c G

x 0 X X

(1.58)
1.2

a2A+- (n) 2exp(_ u + r)du
N NA 2a2 2z a2

X 0 X X

Third, the radical is removed from the in and the

exponential of V'u is expanded in its power series.

Fourth, the order of integration and summation are

interchanged and finally I have,

ce " X 1f ( m-I)
- u l nu exp(--u (du

NA 4a/ __7 m' a 2a7
N x-0 X

1152

A I + V-j-r--'e) u 2 (In u) 2 exp (_u )du
NA  NA  8a -- m=0 m: a 2  2c7

X X 0 X

The integral in Equations (1.59) can be evaluated [241 and

the final result is obtained:

ww - --
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-e x im I-)+I ,

N A 4/7 m-0 m X r + + X1

and (1. 60a)

2

2 -1, " mr

NA  N 8' m0 m i X  2 J 2

[l(+ )+ln2 + ]2  1 )

Although the Edgeworth's series will provide an accurate

approximation to the density we seek, the best approxima-

tion for the moments of A are those of the log transformed

Gaussian given by the statistics of Equations (1.60).

Though not immediately derivable from Equations (1.60)

when a 2 is small, Dyer [4] obtains, by taking an expansionx
around the peak of the density,

1. A [ln4. - (/u)
N AX X X

(1.60b)

N A X x
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Returning to the Edgeworth's series, and to gain more

insight into the way the coefficients of skew and excess

(ys and *e) behave, depending upon the number of groups N,

and number of line components in each group Lit I have

plotted ys vs L in Figure 1 for N= 1 and N> 3. In like

manner, ye is plotted in Figure 2. Each was constructed

as follows: Each group N has the same number of line

components L, and the long term average mean ii of each

group is quantitized in 3dB steps, i.e.:

i= (1 i relative units

L. = LL

For the case N= 1, Equations (1.50) and (1.51) yield:

Ys = 2L-/

Ye- 6L - 1

In the limit as N- Equations (1.50) and (1.51)

converge to:

=S 1. 48L-
1 / 2



tC)%

-Z,

- 0 0

C\j - =

crn

LALJ
'-D



6

5-

4--

Ye

2
N I

N 3

0,
15 9 13 17- 21 25

L, NUMBER OF LINE COMPONENTS

Pig.2 The coefficient of excess, ye , for one group (N=l)
and three or more groups (N2:3) as a function

*of L , the number of line components in each group.
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= (3.601L- 1

The convergence is very rapid. As evidence, the exact

value for N = 3 is only about 10% greater than the limiting

value.

From Figures 1 and 2 it can be seen that when N= l,

the coefficient of skew and excess closely approxLmate

Gaussian values when L> 6. When N> 3 they closely

approximate Gaussian values for L> 3. More justification

for this conclusion is given in the next several

paragraphs.

For further illustration of significance of the value

of (s and ye I consider the case N= 1 and L = 2. For

simplicity, I let ji= 1. Then,

P (X) = Xe-X (1.61)

UX. = 2

a2 = 2x

Ye = 3

Equation (1.61) is plotted with the Edgeworth's series,
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Equation (1.45), and its corresponding Gaussian in

Figure 3. Note that the large values of ys and Ye would

predict the Gaussian to be a poor approximation, and so

it is. The Edgeworth's series, on the other hand, is

quite good except at the tails.

Taking the log transformation of Equation (1.61) for

the same simple case (N= 1 and L= 2), 1 have the density

of the level in dB:

PA(A) = 1 exp -A - exp (A/c) (1.62)

Equation (1.62) is plotted with the Edgeworth's series as

given by Equation (1.53) in Figure 4. Again, the values

for ys and ye suggest the log transform of the Gaussian

to be a poor approximation, and indeed it is. But the

Edgeworth's series for the density of the level is

remarkably close. Thus, I conclude than when ys and ye

are large, the Gaussian is not a useful approximation,

but the Edgeworth is, especially when dealing with the pdf

of the level. Also, it is interesting to compare

estimates of the mean level. Equation (1.60) gives

?A = 2.28dB while the exact value given by Equation (1.25),

1'
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0.45

0.40-
EXACT

0.35 EDGE WORTH

0.30-
/ ..N"GAUSSIAN

.0.25-
X/

0.20/

0.10 -

0.05-/

1l 0 1 2 3 4 5 6
XSHORT-TIME AVERAGE MEAN SQUARE PRESSURE

Fig. 3 Probability density for the case N--:JI L--2, and I. :1.

)( =/2- and Ye-- 3 . The exact density is shown
with its Edgeworth approximation and its

corresponding Gaussian.
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r I|

/ \ L G-

0.14 / LOG
\--TRANSFORMED

0.12 GAUSSIAN

0.10/ LOG
/TRANSFORMED

"--"\EDGEWORTH

0.6 EXACT0.06-/

0.04 -
/I I

0.02-

-8 -6 -4 -2 0 2 4 6 8 1o
A, LEVEL OF SHORT-TIME AVERAGE MEAN SQUARE PRESSURE dB (ar. ref)

Fig.4 Probability density of the level for the case plotted in Fig. 3.
Shown with the exact density are its transformed
Edgeworth approximation and its transformed Gaussian.
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setting L1 =L 2 = a = a2 = 1, is A = !.83dB.

As a second example, I consider Case (c) of Figure 2

of Reference [4], with the specification N = 2, a1 = 0.3,

a2 - 0.6, and L = L - 2. For this we have y. = 1.14

and ye = 2.04. The log transformed Edgeworth approximation,

Equation (1.53), is plotted with the exact density in

Figure 5. Here, Equation (l.60a.)gives uA = 9.16dB while

the exact value given by Equation (1.25) is A = 9.39dB.

The log transform of the Gaussian is not a good approxima-

tion, but here again the Edgeworth and the exact density

are for all practical purposes identical.

For a final example I examine a three group problem

(N= 3) using the results of Section 1.2.1.2 to compare

with the Edgeworth's approximation and the Gaussian.

in this example, a1 = 1, a2 = 2, a3 = 8, LI = 2, L2 = 4,

and L3 = 16. Using Equations (1.49) and (1.50), I find

ys = .86 and ye = 1.28. Equation (1.53) and the exact

density of the level as given by Equation (1.33) are

plotted in Figure 6 with the transformed Gaussian. Once

again, Equation (1.53) is exact for all practical purposes

while the Gaussian assumption will result in some error.

Thus, from our examples for ys and ye not too large,

i.e., < 1.5 and 3 respectively, the first four terms of

the log transformed Edgeworth series adequately represents

t -±.-



0.20 A

0.18I

0.16 I

0.14 ILOG
0.14-TRANSFORMED
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0.12 I

o0.I10 /
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0.06 -EDGEWORTH

0.04 I

0.02 -/ EXACT

0
-2 0 4 8 12 16 20
A LEVEL OF SHORT-TIME AVERAGE MEAN SQUARE PRESSURE,

dB (orb. ref.)

Fig. 5 Probability density of the level for the case N=:2,
L = L = 2, jl 1I0/3, and k,zL. 5/3 , ys - 1. 14 and

Ye=2.04 . Shown with the exact density are its
transformed Edgeworth approximation and its

tronsformeol Gaussian .
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0.40

0.35

0.30 -I

TRANSFORMED I
S0.GAUSSIAN

0.15 - II

LOG
0.10- TRANSFORMED 

EDGEWORTH /

0.05 - EXACT

0-
0 2 4 6 8 10 12 14
A LEVEL OF SHORT-TIME AVERAGE MEAN SOUARE PRESSURE,

dB (orb. ref.)

Fig. 6 Probability density of the level for the case N :3,

LI:2, L2=4, L3 =16, /.I= I,F 2=I/ 2 , and

113= 1/8. y's = .86 and ye= 1.28. Shown with the
exact density are its transformed Edgeworth

approximation and its transformed Gaussian.
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the levels, while the log transformed Gaussian requires

Ys Y e % 0 for it to be adequate.

I now apply the foregoing analysis to the N= 15

problem of Reference [4]. This problem involves

estimates of ocean traffic in the North Atlantic.

Components from each of the ships are grouped with 3dB

quantitization in N= 15 steps, with components within each

group numbering as high as Li = 57, as is shown in the

first three columns of Table I. With the use of

Equations (1.50) and (1.51) I find ys = 1.025 and

ye - 1.743. In Table I, the contributions of each of the

groups to the mean, variance, and coefficients of skew

and excess are also tabulated. As is clear from the

table, groups 9-15 contribute very little to the overall

density, since the variance, skew, and excess do not

change (to within three decimal places) beyond N= 8.

Reduction to an eight group problem, however, is not

much of an improvement over the 15 group one. But,

Equations (1.46), (1.47), (1.50), and (1.51) are very

simple for any N, and in comparing ys and ye for this

case with those of our previous examples, we can expect

the density of the mean square pressure to be closely

approximated by Equation (1.45). Similarly, Equation (1.53)

should yield the density of the level in dB, which for all
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practical purposes would be exact. Equation (1.45) for

this case is plotted along with the Gaussian in Figure 7,

and Equation (1.53) is plotted with the transformed

Gaussian in Figure 8. The Gaussian pdf is seen to depart

significantly from the Edgeworth pdf, even for a case

having a very large number of line components such as

may be appropriate to an actual oceanic situation.

However, with reference to the examples above and

Figures 3-6, we are justified in expecting that the

Edgeworth pdf is virtually exact.

As noted earlier, an analytical expression has not

yet been derived for the statistics of the icg transform

for N > 3. However, I can estimate the mean from

Figure 8 to be (supported by a numerical integration of

Equation 1.53)

A ' 7. 2dB

The Gaussian assumption used in Reference [4] led to a

slightly higher value for the mean (% 7.5dB) as a glance

at Figure 8 would explain. Equation (1.60) gives

I 7.51dB affirming the result obtained by Dyer [4]. The

standard deviation as computed in Reference [4] of 1.2dB

appears reasonable, again by inspection of Figure 8, while

Equation (l.60a)yields aA 1.40dB.

_ _ _ _ _ _ _ _ _ -.- .-.* T -
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Fig. 7 The Gaussian and Edgeworth approximations of the
probability density of the short-time average mean
square pressure of the noise that may be sensed
in deep water near Bermuda in winter, for a 1/3-oct
band at 60 Hz and an omni-directional hydrophone.
The ships have been grouped in 3dB steps in
fifteen groups, with overall mean , variance , and

coefficients of skew and excess as specified in

Table I
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Fig.8 The transformed Gaussian and the transformed

Edgeworth approximation of the probability density

of the level for the case plotted in Fig. 7.
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We may conclude that when the number of groups which

add significantly to the overall density is greater than

3, then use of the Edgeworth series approximation can be

quite valuable in estimating the pdf of the received

signal. While it may be tempting to use a Gaussian pdf

for values of y < 1 and y < 2, significant differences

in the pdf for the mean square pressure or the level

should dissuade us from this course. It is true that

the mean and standard deviation of the levels are less

sensitive to the differences between the Edgeworth and

the Gaussian approximations, but the Edgeworth is not

much more difficult to use and is thus to be recommended.

The Edgeworth's series approximation therefore

provides an easily implemented method of (1) estimating

the statistics of the level in dB for even the most

complicated realization of Case (c), and (2) revealing

the extent to which the Gaussian assumption is a valid one.

This is particularly valuable because one cannot merely

assume on the basis that N is large that the Gaussian

assumption will be a valid one. The critical factor is

the amount cf energy in each group. If one or two groups

contain most of the energy, then the governing density

will be significantly different from the Gaussian and, in

fact, will more closely resemble the density that would be



associated with the most energetic group.

If the tails of the pdf are the primary regions of

interest, then exact computer solution may be a viable

alternative for a complicated realization of Case (c).

It should be noted, however, that more terms in the

Edgeworth's series can be taken to obtain any arbitrary

accuracy desired, or alternative methods such as the

Chernoff bound or "tilting" the density can be applied

[25]. These methods will not be discussed in this work.

1.2.2 Amvlitude Rate Densities

In this section of the thesis I will derive the

pdf's of , , and A for the multiple source case.

These rate variables are dependent variables with respect

to the amplitude variables except for certain special

cases. This fact introduces a great deal more

complexity than has been encountered up to now. Solution

for the joint densities of amplitude and amplitude rate

are generally required before the marginal rate densities

themselves can be found. Solution of the rate density

for one variable does not lead by simple Lransfornaticn

to the solution for the rate densities for the other two

variables as was the case for the amplitude.

in ceneral, the rate variables depend upon both 7-
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a measure of the intensity, and va, the single path mean

square phase rate. This implies that there are a plethora

of different possible combinations of multiple sources

22with different or same 01 and/or different or same v.

The breakdown into the same cases employed in Section 1.2.1

will be followed here, though their definitions must be

expanded to include vz. In Section 1.2.2.1 I examine

Case (a), the case of multiple sources or lines in which

a and vz are the same for all source/receiver pairs.

This would apply, for example, to noise which is flat

across the passband of the receiver from a small

geographical area or sector. In Section 1.2.2.2 I

investigate various special cases when the a2's and the

V2 may be different for each source/receiver pair, with

more general applicability, including Cases (b) and (c).

1.2.2.1 Multiple Components of Equal intensity
and Equal Single Path Phase Rate

I will first solve for P. ( ) which is the pdf for
XLE

from L sources or components of equal G2 and v2 . From
L L

Xtotal X n, it is clear that total = n" Thus
n=l n=l n

for this, and only this variable, we can employ all the

very nice properties of sums of independent random

variables. For the pdf of

• '<Lf
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v X
P'L(X) - " P (yl)P (y2

-yl)..'P'.(X-YL)dy...dyL

. . .(1.63)

or

P.() = ewX dw (1.64)
2wE -(b 2 + z)L

by making use of M (w) (Equation A6), where b = i/2azv.

For X > 0, therefore,

b 1L dL-1 7
P. (k = b2~ 2wi (L-l)1 'dT L L]LE 2 r (u+ib) _ ib

Applying contour integration around the lower half plane

for j< 0 yields, as expected, the identical result given

by Equation (1.65) because j is symmetric. Applying

Equations (1.63) and (1.65) for L = 1-6, I obtain

P eb
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X2(b' +j -sb' exp (-b~j

P* Q) 1 b~ 2 + 3b1Il+ 3blexp(-bj~j)
X3E 1

P. (b) ={ 4 3 +6b 3kI2+ 5bId+ l5bexp(-bj)
X4E 9

p. b I 1k 4 ~bjj+ 45b3 J 1 2+ 105b 2 IkI
X452

+ 105b) exp(-bI~I)

p. (*.2= {bsjr js 5 15bsj*! 4 + 105b I I + 420b31

+ 945b2I5~I +945bl exp(-bjk'i)

... (1.66a-f)

j Upon inspection of Equations (1.66) the general form 0:f

the density for arbitrary L emerges (which will be proven

below):

P. 1 e-bi~j Z (L+k-2)! X* L-k b L-k+l.

. .(1.67)

j - -- 7-
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Clearly, U = 0, and in general

XLE

.n 1N !L-k+l1

E [ LE] =2L - l k (L+k-2)! kL-k+n -b d
(L-1)!2 k=l (k-1) ! (L-k) 2 0

. (1.68)

which, for n odd is 0, and for n even:

.n 1 N (L+k-2) ! (L-k+n)1E tx~ -L-- lbn I •-l
(L-l) b k-i (k-l) ! (L-k) 12k-(

Using the independence property I I get

E[ 2] a! 8La4 V2  (1.70)
LE XLE1

This result is identical to Equation (1.69) when n=2.

A much more elegant solution for P. (Q) will now beXLE
developed. The approach yields the complete solution for

the equal a equal 02 case including P.L(5), P', (A), and
1 5LE ALE

all the joint densities of amplitude and amplitude rate.

______________________________
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L
I begin with Equation (1.12). Because x = I X

L n= 1
XLE= k the x sare independent of

n=1 l'
each other, and the n's are likewise independent of each

other the joint density P .# L (X, ) can be expressed as

follows:

L

Pi e- iW ei'aXdwda (.1
XIXLE =a = Tf (W+ i( 1 + 2,2a)',z2 )] L (.1

which is just the inverse transform of the L thpower of

Equation (1.12). 1 use the calculus of residues and

perform the integration over w first, which has a pole of

order L:

L

P (xV(-)4 2 f d 1 [-iwxJ ia
X1XLE T=- F

W M - 1 +2C2Vza 2(1.72)

and
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(}IL L-1 -2 + 2__ v z z ) X - ia

P * (x,$) = L-Je.d
2w (L-1) e -a

. . .(1.73)

Performing the final integration I obtain the desired

result, the joint density of the sta mean square pressure

X and its rate for L sources with equal Ca and equal v:

- 3

* e(-I - x*)
.2L+I 2L+l xP .vz

. . . (1.74)

To find the marginal density P. (k) I integrate over ,X

in Equation (1.74):

P LE() PX,.LE (X,.)dx (1.75)

to obtain:
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L TL L

. . . (1.76)

where r(L) is the Gamma function and K (Z) is the modified

Bessel function of order v. If we make use of the

identity (20]

K (Z) e- Z L (L-2+k) k

L- 2 F k=l (k-i)! (L-k) ! (2Z)

it is easily proven that Equation (1.76) is identical to

Equation (1.67). When is integrated out in

Equation (1.74), I obtain P (X) which confirms theXLE

result first obtained by Dyer [4].

The next step is to solve for the joint density of

p and ,. This is easily accomplished by the following two

dimensional transformations of Equation (1.74):

P a2 P 2 2p P (X, )dxdk (1.77)
P3pp - XILE
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which yields:

( P'M P) 2L-1 - 2 7 (1.78)
1 2L1-2a',L (L-1) !2 L a 1 1 1 2

This result is rather remarkable. One can see immediately

that p and 3 are independent as they are for the single

source case and furthermore that is independent of L,

and P L (b), the density for L equal receptions is in fact

identical to P. ( ), the density for the single source.P6

Integrating over and p respectively in Equation (1.73),

I obtain:

2L-1 2L(179

PPLE (p) = 2L-1 exp 2(1.79)
(L-1)!.

The mean and variance are respectively

/c I C1 (2L-1) !!.

.0LE 2L (L-1)!
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where (2L-1)!! = 1-3-5..(2L-1)

a2 =a2 - i

PLE 1 LE

and

P )= exp Lav](1.80)1 
Z

=0 *and OaI = azv2

~LE PL 1

To complete the statistics for this case, I make the

final transformation A = e ln X and A c/X in

Equation (1.74):

e A/c A eA/e

PAAL (A, A) - PfL (X,4)dXdi (1.81)

to obtain:
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exp(Lt)1 A/
pAA(A,A) exptL4-)- expF eA 12c + rC T
AA 2L+a 2 /+2ir (L-1*)!1

.(1t.82)

Integrating over Ain Equation (1.82) 1 obtain

(A 1 ~----- exp (1.83).

iA ( in2 21, (- yx A+2a
L LE

and

a2 ez S (L]aA [6

where

S1(L (1 0~
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L-!.

S,(L) = 2 , 2(1) 0
w = l

Again this result was previously obtained by Dyer (4].

Integrating over A in Equation (1.82), 1 obtain

P () 1 (2L-I) ! ' 1/2,
=LE C 2 1 + T ) L+1/2 (1.84)

The moments of A for the equal reception case are

interesting:

0 ,n oddn n-L+12 T

Ern n -v 2 (n-1) (2L-n-2) 1! n
LE (L-1)! 2(.

n

Note that the single source case yields an infinite second

moment as reported in Section 1.1, however, for L > 2

the variance always exists.
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1.2.2.2 Multiple Com.onents with Different
al's and Different v2's

The most general case of this problem is Case (c) of

Section 1.2.1, i.e., there are many groups N, and within

each group there are L. receptions with identical C2 and

v2 . Because there are now two parameters which can vary

for each source, this implies that in general for

multiple sources the number of groups will be larger for

the rate variables than the amplitude variables. I

define az and vi to be o2 and vz for the jth source

receiver pair. Considering the most general case and

using Equation (1.12) I find the characteristic function

M N NLj 1-6y4 .(w,a) = ( ) 1 1 r- (1.86)

-X, X f~12i zN~(~L+~22v7]N, -q (W-i[lj + 21j2v

Taking the inverse transform

PX Nz~ i -z1iCXcd (1. 87)

'X 4rj1 fEy f (iJ- 4 Z2 v2]'
_402c' 1 j .jlj

Unfortunately, I have been unable to evaluate this integral;

thus a retreat for the moment frcm the most general case
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is in order. Much more progress can be made in solving

for the density of 5 because here we are dealing with a

sum of independent random variables, and it is not

required that we know the joint density. This analysis

will ultimately lead to a very simple and useful

approximation of the density for under the most

general case. Upon completion of this analysis I will

return to the problem of the joint densities and the pdf's

of and A.

1.2.2.2.1 Solutions for P.( )

First I will consider the exact solution when the

product cJv is different for each source/receiver =air,

Case (b). I apply Equation (1.63) for L= 2:

b, -bl b -b2

P. = e 2 e (I. 88)
X2D 2

where bi = th2 2Vi, and the * denotes convolution.

Performing the convolution

!1 b . 2  -b1 l -b 2 :' (-- bl e e.8

2 (] 2 b " b2:2 2
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Rewriting Equation (1.89) in a slightly different way,

M 2 1 3.e 1
XZ 2 -b J "2 J b2  } (1.90)
X2D b - b b -2i

No p. (V) = p. (V) * b" b3IxI
X3D X2D 2- e . Examination of

Equations (1.88- 1.90) reveals that successive

convolutions can be done by inspection:

b2 b- b bii -b
P. (i) -2 1 3 {[~b b e 3 1

1__-- b b 3 e -2* b e (1.91)

b 2 - bz b 3 b2

Rewriting this result so that the method of inspection can

be applied again,

X3D (b- b2) (b2 - b)

2 1 3__1
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lb b -b21

133-

2 33-4 2e-
(b? - b ) (b - J

- - 4 { (1.92)
(b2  b2
3 1 3 2

and thus,

P. M 3bsee 4 1 e ieu}
X4D (b2 - b2) (b2 - b2) (b 2 - b 2) 2

.. .. . .... -b 2 1 1 1

2b b) 1 3bb4 {-T e2~}

(2- b (b2 - bz) (b2 - bz)

2 132 4 {2 e 3Il

3b b2 b2 -bb
( b ~ - ~ ) b 2 

-
2 ) ( b

1 2~bb 3f;4 eb41 i (1.93)
(b2 - b2) (b2 - (b2

414 2 4'-b L

etc....

Thus it can be seen that P. L ($ ) is a weighted sum of

the individual single source pdf's of 5.It is also
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evident from the L- 2-4 cases that in general

L
II b bil iP- W 'Ji (1.94)

XLD nt (b2-b 2)): m~l

M#i

or more simply in terms of a and vili

L a2v
1 l

. Q exp (1.95)
XLE i- (a7.VI -a4 12)n li i im"m

m-1m#i

Solving for the moments,

0ok odd

E~kL 2(1.96)E(X] L 1I b

kI 1 nl 1k even
i-i (b 2 b-) bi

M-i

Making use of the properties of sums of independent
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random variables,

L
a -8 L7 V (1.97)! i l 11 9v)

Equation (1.96) with k=2 confirms this result.

An exact solution for P.N( ) for the most general

case considered in the beginning of this section would be

an N-fold convolution of Equation (1.67) or (1.76) with

itself. An exact solution for N=2 will now be presented.

L2

11 (L2+k-2)!  L -m+l

2X (LM 1) !2L  1- (m-l) !(L2  k) !2m I b

1 L _2_M 2_ _m-2)! b L-+l

gf-b ly l •-b2J-yI lYl-k I,-yL -mYdy (1.98)

I will now evaluate the integral. I consider > 0

(we know the result for 5 < 0 must be identical), y> 0, and
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then y < 0:

For k>0 and y>O,

let y =t

+Lbl -km~ 2l-t 1~-k  L2-m

L+L 2 -k-m+l e -t dt

0 0

. . .(1.99)

To remove the absolute values this integral must be further

subdivided for t< 1, and t> l:

L +L -b 2  (b1 b 2 )kt L1 -k L2 -m
1 je 2 e t (1-t) dt

f o
00

b2  -(b 1 +b 2) t Lk L2-m
+ e e t (t-l) dt} (1.100)

1

The first integral in Equation (1.100) is the confluent

hypergeometric function encountered in Section 1.2.1.1.

Ii
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The second integral is a degenerate hypergeometric

function known as Whittaker's function [18,24]. Performing

a similar analysis for y < 0 also yields Whittaker's

function. Simplifying to as much an extent as possible,

I obtain for the final result:

2 (Ll+k-2) ! (L2+m-2)!bb6 a+1
P2() ( r LjL+L 2 k k[-

,r(Lr(L2 )2_1L m-1 (k-1)!(L 1-k)!(m-l1)!(L 2-m)!2 
-2

{[ep(- rb(a) r , -6) Mcaatd, (b2-b1 )Ii]

•, _21tl) ri+Iri2-rb 1))W

exp[- I (b-b )F(S)[(b +b ) I(3)

-(b,+b 2 ) Ix] + (-1) a-1 (- m (b2 b ) I
2 2

[ (b1 +b)I 7(a) w. ,+i[ (b+b2 I ] (1.101)

2' 2

A1
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where,

-L L1 -k+l1

6 -L 2 -m+l]

4(ci,S,z) is the confluent hypergeometric function,

and W (z) is Whittaker's function.
V4L

In order to check Equation (1.101), if I let

L L 2 -1, then I should obtain Equation (1.89).- For

L1  L 1n

1b 2

-21* M 14exp(-b 21*L)M[1,2, (b 2 -b1)[*L

" exp[- 1. (b1-b )IJI][(b + b )I*I] W0 ((b +bI

2-- 1 1
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I now make use of the following identities [18 ,241:

M(l,2,2z) - sinh zz

W (Z) - W (Z)

W0,x (Z) - i K x(2) ,and

K(w) - /w/z e-

where K (z) is the modified Bessel function of order v.
V

I obtain

and applying these results to Equation (1.101a):

*(* b 1 b2 f1
21 Qi- b2 exp(-blIkI) - exp(-b 21*I)].

+ b1  b exp (-bl 1() + exp (-b 2 II]

- l b2. -,,,~
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It is easily shown that this result is identical to

Equation (1.89). However, though Equation (1.101) may be

exact, it is of significant complexity and thus of

limited engineering value. For arbitrary N it is

therefore clear that P . ( ) is analytically out of hand

at this time. The complexity of the result, however,

once again motivates an approximate solution. An

Edgeworth's approximation turns out to be quite simple

and very useful for even the most general case. Recall

Kthe Edgeworth's series is given by Equation (1.42). In

the present case, however, because k is symmetric about

the origin, the coefficient of skew, ys, is identically 0.

Thus it remains only for me to solve for ye' the coeffi-

cient of excess. First I solve for K4 . the fourth order

cumulant or semi-invariant 0.41 of :

a

K4 = E[ 4] - 3(E[ 2]) (1.102)

Performing the required calculations on P.( ) given by

Equation (1.4) I obtain

F4 - 192a V 4 (1.103)

Recalling Equation (1.49) and considering N groups of Li
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identical sources each, the most general case, I have:

N
K 4 -192 1 L a'iv' (1.104)
N 4i-li I12

From Equation (1.70) 1 have for N groups of L.i sources,

N
a 2. Y7 SL a 0 (1.105)

Applying Equations (1.44), (1.104), and (1.105), 1 obtain

the result

N

ij Li a1 v I

Ye 3 N 2 (1.106)

and the Edgeworth's series is then:

NXW 1 14 T)(1.107)

or
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P () l + 3y e Ye +  (1.108)
NX 0i

where n a ! and

Z (T) =  exp (- 1

It is clear from Equation (1.106) that as N becomes large

or the Li become large, P 0 ( ) approaches a Gaussian.

The maximum value of (e is 3 for a single source/receiver

pair and for L identical ones ye goes to zero as 1/L. In

Figure 9 I have plotted the exact density for N=l, L=l

given by Equation (1.4) with its Edgeworth's approximation

given by Equation (1.108). This is clearly the worst

case. I have let a2v = 1 for convenience. In order to

gain some understanding of the behavior of ye for this

case, in Table II I have listed ye and PR(0) from the

exact density, and its Edgeworth's approximation for

various values of L identical sources. The percent error

is also tabulated. From Figure 9 it is evident that the

error shown in Table II will be the maximum error of the
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Fig. 9 Comparison of Edgeworth's approximation for X when
N L a I given by equ. (1.108) to the exact density forj

Xgiven by equ. (1.4). This is the worst case.
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TABLE 11

The maximum point by point error of the Edge-
worth's approximation to P. (X) for various
values of L. E
Also listed is the value of y , the coefficient
of excess for each L.e

L Y LE(0

____J e Edgeworth Exact Error_

1 3.00 .1939 .2500 22

2 1.50 .1184 .1250 5

3 1.00 .0916 .0938 2

4 0.75 .0771 .0781 1

5 0.60 .0678 .0684 1

6 0.50 .0612 .0615

10 0.30 .0463 .0464 .3
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approximation in the main lobe. From the table

convergence to the Edgeworth's is very rapid and it

appears quite reasonable to assume that the Edgeworth's

approximation will be a very good one when ye ' 1. It is

true that the Gaussian assumption will also be reasonable

for ye < 1, however, because the corrections required by

Equation (1.108) are trivial, accuracy need not be

sacrificed for expediency.

1.2.2.2.2 Solutions for the Joint pdf's,

P0) and PA(A)

In this section I will first solve the problem of

two different source/receiver pairs, i.e., the and 

are not the same. I will then generalize the analysis

and solve for N=2 of Case (c). Finally, I will indicate

the analysis required for arbitrary N.

For two independent pairs, the joint density of

and is given by taking the product of

Equation (1.9) with itself with different a2 and V2 :

22 4X a! 2 42-2-

~Xl'XlX 2'X2 (x1 a1 x2 a2 V1 l 2 1 1ll1 1 212 2

X, X 1I
exp[ - -- ] exp[- ] V2 (1.109)

2aI 2a2  1 1 a8211 12 A1 1 8X212 2
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Now, the pdf we are after is the. joint density of X and

kwhere X - Xl+ X2 and = + I2 note that in

Equation (1.109) land 2are jointly Gaussian. Because

the density of their sum is given by convolution, the

following can be done by inspection:

P X x pXvl mC2 22 (1.10

0C2 20r2 2(x2iv2 + 4 2 1 2)111 12 2(4X 1v

The final result is obtained using the convolution again:

XIX2D 2cr2 402 a02 (xV - +x(~~ 1 xx)
12 o 11 12 /'2T"1 X0 11 1  12 4xxo 2

1, 1r 2 2 ldXl~2 1  (1.12o 2a2 F(i~v + (x0 2vU

I now let -, Xt:
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P * (x#) - ex p(-X/2ac 2) r 1
0 1 1X'X2D(') 80 2 2]' 0l_ f 22 ll-022

--a 2". _"'-: a-. 22--

-t -12 1 dt (1.112)
expL 211°12  8X0 2 V2 + 8Xt(G I 2- a 2 2)-A

I have not been able to evaluate the remaining integral in

Equation (1.112), however, as will be demonstrated below,

numerical integration is very simple. Making the

transformation to p space I obtain:

3 1p exp(-p2/2a 2 ) 1
P . r, -J

110"12 0 12 2t (11 1 12 2
2P 2 a 2-- ---a 2 21

_(2Fi) - dt (1.113)

• Cr ( 2 2 c 2 V2 + 2t(a V2 az "z21l 12  2 12a 2  - 12 2

Integrating Equation (1.113) over p I obtain the marginal

density of for two different sources:
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( 0) [11[12 2 +t(a 2  20 1 11 12 11 1

6 6. F 1 dt (1.114)

L2az 2 + 2t(aC1v -V v)212v 2 1Cl1 e 2v 2

The integral in Equation (1.114) can be evaluated by

expanding the exponential in its power series and

integrating term by term. After significant labor

I obtain:

11 Cll(lV - a'1 2 v2)
W a - 2 (a 2 2 a- 2 2

(a 1 ) 2 {1 12 21

[2O 14 -- ( -22) 
-

2D .1S a V - 2' o n-v0

. . .(l.115)

where r(a,z) is the incomplete gamma function [23,24]. The

appearance of 1 1 does not mean that P (0) - 0 because
2D

the limit as -* 0 of the incomplete gamma function is

infinite. If the incomplete gamma function is expanded in
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its power series, I get:

al 1 a ' 2  a 2 IV2 ) Go
( 5 W 11 12' 111 12 2 1 (1)'(n+1)

P2D " I (" a V- a b , 2 ) z n011 1  12 2

j 2 a 1..t In 2.nMmr1i2 ii (-1) m (it) a V 2n-2=+l aV2n-2=+1)
• , _ m (m.n1) 2 ,12 2 11l~ 1

1 1 .. (0.116)

In obtaining numerical results from Equation (1.116) I

encountered overflow problems in computing successive

terms of the series before an accurate result could be

obtained. In order to avoid this problem, Equation (1.116)

should be rewritten as follows:

r2 V2 (a2 V2 _a2 V2)

2211 12 11 12 2
(-l u - 1 2 2 )

(a 2 _ a2  m M
{L ,12 2  nl 12 11 12,2,,,.

U-0 a 4 V - a V Vj m-0 m!(m-n-P) 2zj-v

-1 1U- 12 2' -~. .*v
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1(a I )a 2 a2 v2a u 11V11 (.l n,+1) . . .. 2 1 ill,' ')' z 2
- L oV_.a-.V 2  -o m!(m-n-b) 2%.2 2

11 1 12 22a 11v1

.(1.117)

Values for P (2D() were computed by numerical integration

of Equation (1.114) and from Equation (1.117). Depending

upon the value of .5 desired, the numerical integration

of Equation (1.114) to three place accuracy was about

40 times faster than use of Equation (1.117). The value

for - 0 is obtained from Equation (1.114) analytically

and exactly to aid in these comparisons. Performing the

integration and simplifying as much as possible:

F 1-a3 a3Vj
P (0) 1 11-22
2D -- 1 12 2

a a 2 (a 2 V I -2 2
11 12 1111 22 02 122

(a 2 - a2 /2 (a Vl 2 al2v2) (12 2 -

P12'2 011'1
[ 2 2a 6 + V(0 a 2 2aV a2a2
11 2 12 2  1 2 1 2 - 12 - 1112 2 4 -12 1

02 4 .2 -2 4 2 v2  2 2 2 2 1  2V2 -la i1l~ -1i-12 2 11l 12 1  11i(12 11i 1 1 2

12 21I.

S. .1.1181

~t
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The mean of is zero and the variance of is obtained

by interchanging the order of integration in

Equation (1.114), integrating over first, then t:

2 a2 CT2v2 a2 V 2  a2 V 2 -a 2 V 2

111 2 12 2 1 1 1 111 12 2 n12a ! r - - Z + a2 aZ In -
P2D a2 CT12 11 a12 12 - 11 a21

.(1.119)

Despite the complexity of Equations (1.114) and (1.117)

it appears as though a Gaussian approximation is an

exceptionally good one. For values of ai' iV' a2' and

V taken from data, which will be discussed in more

detail in Chapter III, the values of P (5) from
2D

Equations (1.114) and (1.117) deviate from the Gaussian,

using the value of a' from Equation (1.119), only after
2D

the fourth significant figure. A more formal

calculation with equivalent results is obtained if the

coefficient of excess, ye, is solved for. I apply the

definition of ye from Equation (1.44 ), perform the

two integrals required, and obtain ye for for two

different sources.

t-
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D V3o 4, 3C + 6( 2  - G2 i-3c* a 2 a 12 2 11 1 11 1 1 2D 2D

. . .(1.120)

Applying the values of the parameters used above and

Equation (1.119) in Equation (1.120) I obtain for this

example that ye - 2.4 x 10-7 which certainly warrants the

Gaussian assumption! Coupled with the result of

Section 1.2.2.1 in which it is proven that P LE(0) remains

identically Gaussian and independent of the number of

sources, it appears quite reasonable to state that even

for the most general cases, P ( ) will for all practical

purposes be Gaussian.

Making the transformation A - elnX in Equation (1.112),

I obtain

5 A/c 1

~A 2D 2 2
_2--a:':,, rzV -+ .f2- ":,2-V-8c29a2  12v2 11

11 12 0 12 2 11 - 122 )

A/c (a2 - aA *)2• e t 12 11 a_ dt

2a2 aF 27 2  + Wct (G2 V 2
11 122 2 111 2 2

•. . (1.121)

- - -
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Integrating over A I obtain

2

12[a 2 2 + t(a 2 - a2 2) dtr12 2 11 1 12 2
CaJ £ 1at2 (- 1 1 ~)][4a~v + 4t(a21v - V1

PAD 0 11 1211--112 
+ t (7) ] [4 12 2  1Ul1 1 01122

. . .(1.122)

Making an enlightened change of variables allows the final

integration to be performed, and

21 - C /e+4V
P: (A) A .4a 2 +B+ E[l+AD A 4V2)3/2 111 1 F

-2 /,z -4 4A" A -4)3/2V1 + B + E[1 + ]1 1

+ V)32 12 2 DF J

. . . (1.123)

where:

3 1
A 3

12 11
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2 Cllv{ " C 2" /2- - 1  22

C V a 2
2 11

C 11 1 12 2
a2 a21211

0V a 2 V 2  l 9 242)
04(v a111 12 2 + - 4( 1 1 2 2

2 2 2 2
112 1 11 12

1 2 a a

E 8[11 22 1 + j (02 V 2  a 2 V2)3 a2C 4 a 2 21 *3 11 1 12 2 e
1112 11

2iI (a42 el (a i~ 4 VF A11 1 2 22
F= 2 =-a1a12 (a-2 C2 av 2 

- az77

Though arithmatically messy obtaining the exact solution

from Equation (1.123) is approximately 50 times faster

than numerical integration of Equation (1.122) which

results in three place accuracy. The mean of A is of

course zero and integrating Equation (1.121) first over

' and then t, I obtain the variance,
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C2 a2V2 _ar Z v2 a6 a 2 _ a6 2 2  0
- -2 11121 12 11 2 1211 2 11 12 1 12

A2D 020a2a2-a 2 a~ 2a 2 a72 +~ Cy4u1n J
1112 12 11 12 11 12 11

. . . (1.124)

Unlike the single source case, the variance is finite

though the next nonzero moment E(Ak2] is infinite.

The rule derived for equal source/receiver pairs appears

to apply to unequal ones as well. Namely; E[AD] exists

only for n even and n < 2L, where L is the number of

sources. An example of P 2D(A) is plotted in Figure 10

using values for a2 V 2 , 2 v u2 taken from data. The
11l 1 012P 2

Gaussian using the variance given by Equation (1.124)

is also plotted. The Gaussian assumption is clearly not

warranted in this case, and in fact because densities

for A for all cases are related to the Longuet-Higgins

type density, the Gaussian assumption will be a poor one

in general even when the densities are appropriately

normalized (see Figure 1, Reference (R]), in which case

the variance of the Gaussian will not be relevant to any

of the source parameters.

I will now generalize the approach used to solve the

two source/receiver case to solve the F = 2 case. That is

two groups of pairs, with Li pairs each, with the same
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Fig. 10 The pdf of A for two different sources, equ. (1.123)
is plotted with the Gaussian using the variance
given by equ. (1 .124).
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and v2 (i= 1,2). I start by considering the joint

density of XL E, XL E, XL 2E and 2 given by the

product of Equation (1.74) with itself with different Li,

a 2  and v (i= 1,2), rewriting it slightly to make the11i 3.

first operation obvious:

XL I' LEXL E''<L2E (x 1 X2;( 2 ) =
X1 EL1 E"L2 L2E

1 - 2

(LI_ I)(L2 _I)!2Ll+L2 , 2- 2 - 2-2 - 2L1 2L2
I- 121Xl)llL 22 4)2a12 2 l a 12

X1 X2 X1 X2X
exp 2( 2a 2  8 C 2 2 (1.125)

11 1 11 12Iz lXI 8a'12

As before, I seek the joint density of X, and X where

x XL 1E + XL2 E, and L = LIE + L 2E. A double convolution

will yield the desired density and because XL E and XL E

are jointly Gaussian as before the first convolution

can be done by inspection:
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PI
XL I XL2 .(E x2 k) =

Ll-1 L2-1

- 1  X2

-LI+- 2L 2L2 2-2 "2--
r(L1)r(L2 )2 Ll+L2a2Lla2L2 V-2ir(4Xa V + 4X2alV21(2 11l12 1  42122

p Xl X2 X
e 2ci c2 2a 2(4xla2 + 4

1 12+ 4X 2 a{ 2 v2)j

Setting up the final convolution after making a change of

variables leaves the following result:

L +L-3

x 1 22 exp(-

(r(L )r( 2L I+L2+ --2L1 a2L22X' 1 (L)(2) 11 12

SL1-1 L 2 -1t I(1-t)

2-7 -C2 -" U•2 _-C"2T".2 T"/ 122 t(av 1  12

exp t( 12 1)- 2dt

2at 2  +X{\ 8xt(az1v a3 2)

S• . (1.126)

, >. .,-'."



-122-

This is a key result and is essentially the solution

of the entire N= 2 problem because this joint pdf

contains all the information required for the solution

for the pdf's of X, p, A, k, , A. As a quick check,

if I integrate Equation (1.126) over k (which can be

done by inspection), I obtain Equation (1.20) and hence

all the amplitude densities for N= 2 follow directly.

Integrating over X in Equation (1.126),

P M(k (P +1)A 2L1 22L2 8( l+l)/22 r(L 1)r(L 2)2 Tr Va 11 12

LI-I L2-1
t (l-t)

f 1 z V2+t a z z z-1 (,'A,+i) 2 1 1z +t ]Ii/12 [ 2 11 (ll 1  12 2). T- -2 71-77__ 2 --J2
12 11 -12

- oz + t( 2  - 11
11 12 12 2

M 2 c4az V2 + t(a V - C4C74dtZ
{2 12 11 2 0 1 1 1 2 1  12 l~~1 J

. . . (1.127)

where M = LI+L21

The remaining integral is clearly not a straight-

- -- ________________________________
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forward one, however, we have already solved for

P2( ) in the previous section given by Equation (1.101)

and its complexity has been noted. Clearly the k

densities were handled by much more efficient means in

the previous section. If I transform Equation (1.126)

into P,6 and A,A space, than I can obtain expressions for

the densities P2 ( ) and P ('A) and their moments which

have been unattainable until now.

2LI+2L2-1 2

P *(p,( 2-12

r(L)r(L2) 2 Ll+L2-1 7- 2LI, 2L2
1 2 ~ 11 'j12

LI-I L,-

.(1.128)

Integrating over p. I obtain:
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(L L 1) a2 L2C 2 L1
- ( 1  L2 - ) 11 12

2 r (L 1)r(L 2) 727

1 L -1 (10L 2-1

V,'v + t( V4 - a (aV + t(a 2  
- z )Ll+L2

0 12 2 all1 12 2 11 12 11

eXP 2 dt(1.129)
L2at2 V + 2t (a21 \ IV2 a 2 V i)

As a check, if I let L 1= L 2 I obtain Equation (1.114)

as expected. Numerical integration of Equation (1.129) is

not difficult. Solving for the variance, I obtain

3(L+L Wa2L2 a2L, I1 L 1 -1 (10L 2-1 [a2v 2 + t (a 2 v2 I a2 v2)] 2

a2 3( 1 +L2 -1 1 1 12 f 1t 12 2 11 1 122 d
2 2r2 r(L )r(L) 0o [a 2 + t(at 2 a- a~)L1+L2

... (1.130)
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To obtain the final rate density for this case, I

transform to log variables:

A eA/e

exp([. (LI+L24+) - 12--]

22r(L )r(L2) 2L+L1 j2- 2L1 2L2z L1 )rL2 )211 a12

,LI-l L2-1
.L 1 (1-t)

2

Q /a'2vl+ t(allvl -

FA/e 2 a2) 2 e

e *, -t (a12 - 11A2eij -iL 22 a ] 822v 2 + 8ce(a 2 v2 - 2)
11212 2 111 12"'2J

.(l.131)

and integrating once more over A, I obtain the desired

result:

: ' .... .. -.-: 'L:: ... . , :-: .---=" ,, -- -- -"- '--..-i -. " Ii
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r(LI + L2 + Ll i L2-1
P2(A)2 2 1  2t (1-0

2 em r(L L+L 2 +) 22 a2 1 oVaV+t(a- )r (LI r(L 2) 2L+L2+l 11 12 12 2 11

121
2 ( 2  1-L2)

1 1llA
.I t (12Ii+ dt

22 2 S.20 . 2 2 1-2212 1112 2 -11 1 122

. . . (1.132)

Equations (1.131) and (1.132) reduce to Equations (1.121)

and (1.122) for LI =L 2 = 1. The integral for the variance

of A is not straightforward and cannot be performed2

unless L1 and L2 are known. This completes the analysis

for the rate densities for Case (c) when N= 2.

The solutions for arbitrary N are very complicated.

Fortunately, an Edgeworth's series approximation has been

derived for PN (k) (Equation 1.108) and it has been shown
N

that P No(0) will be accurately approximated by a Gaussian.

NNUnfortunately, PN (A) cannot be successfully approximated

by either an Edgeworth's series or the Gaussian. The

coefficients of skew and excess cannot be found for A

for arbitrary N, thus ruling out the Edgeworth's series,

and though one can certainly fit a Gaussian to A, as

/ _ __
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noted earlier, the fit will not be good, and the variance

obtained from the Gaussian will not be relevant to any

physical parameters of the problem. For realizations

with N >2 in which P (A) is needed, and/or approximations
N

for P 0(A) or P .( ) are not good enough, the following

procedure can be used for arbitrary N provided computer

time is available.

For arbitrary N, following the approach used for

N- 2, I can write:

IE XLxS LP×1 ,LlE,2•.XLN ,LN 1' ,1 ""N'N × ='

X~L 1 L _N__Ln-1iN Xnn

n)rLn 22-24XaFV2 ' a,2L

exp - " - (1.133)
2a 2 802 V2 x
ln lnn

As before, the sum of the n 's involves the convolution of

n1
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Gaussians which can be done by inspection and

P (Xz ,  ~ =
.XL E, ...ax ""X

1 ~ ~exp _.' ]

JJ

L1

Ln 2Ln exp 2j (1.134)

nl 7(Ln )2ln 2

Unfortunately, this is as far as the analysis can be

taken without considering a specific N. Thus, the

procedure would be to numerically compute N convolutions

with respect to the XnIs to obtain P NX,(X,k). Then one

more integration over X yields the exact density for

J.; likewise, integration over p and A after simple

transformation yields the exact density for N and AN

respectively. Perhaps an easier route to P NX,)(X,

can be taken by numerically performing the two

integrations required by Equation (1.87).

I ..." . .
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In summary, the solutions for the rate densities

for Case (c) with N> 2 are of sufficient analytical'

complexity that approximate methods or numerical

techniques must be employed. The densities for even the

most complicated realizations of Case (c) for and

are well in hand with the Gaussian and Edgeworth's

series approximations respectively. For A, however,

complicated multiple source configurations must be

handled numerically.

1.2.3 Coherent Source Addition

In this section of the thesis, I investigate the

statistics of the received signal when two or more sources

are radiating at the same frequency or so near in frequency

that the receiver is unable to resolve them. The

application of this analysis is therefore dependent upon

parameters of the receiver; i.e., its resolution R, which

is a function of its averaging time T (R t l/T), and

the source bandwidths, specifically R> f, and R •Bi,¥i ,

where Af is the frequency separation, if any, of the

sources and B. is the source bandwidth of the ith source.1

With these conditions, the procedures used in previcus

sections are not applicable, and coherent addition

of the signals must be considered. This analysis will
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model random, narrowband, sea noise from biologics,

weather, distant shipping, etc. that overlap in frequency

in a small band of interest.

The multipath signal, p(t), under the assumptions

of phase random propagation can be written for a single

source as

N
p(t) - r [ cos(wt-+ 8n ) (1.135)

n-1

where r is the single path amplitude, N is the number

of paths, and en is the single path phase, which is

distributed uniformly between 0 and 27. For many

sources at or very near in frequency as indicated

above,

L N.

p(t) - I ri I cos(wt + en) (1.136)
i-1 n-l

where Lc is the number of coherent sources. If this

analysis is applied to random sea noise, then

Equations (1.135) and (1.136) imply that each radiator

_.....' Lj-' IIIIIIII -w
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is CW with essentially constant mean output levels. This

is perhaps not too bad an assumption if integration

times and record lengths are not very long. It is

assumed that Ni 24, Vi, such that phase random propagation

is obtained for each source. Thus, Equation (1.136)

reveals that the problem is one of solving for the

statistics of a random vector which is the sum of Lc

random vectors, each with Rayleigh distributed magnitudes

with different means, and uniformly distributed phases.

Forming the envelope of Equation (1.135), I obtain the

quadrature components for one source, and applying

Equation (1.136), I obtain for the quadrature components

of the total vector:

L
c

X pcos = cos n
n1 l

and (1.137)

L

Y psin$ - pn sinn
n-1

where P is the rms amplitude of the total vector, : is the

total multipath phase, ?:n is the rms amplitude of the nth

source, and tn the multipath phase of the nth source.
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The quadrature components for the single source are

Gaussian (8,9], thus from Eqn (1.137) it is clear that X

and Y are Gaussian as well:

1 x 'P (X) = 1 exp -T2,

I -(1.138)

P Y(Y) = Px (Y )

Lc

where a = Z a2  andnil

Px(Xk) -ex

(1.139)

L

where a = a2  2
I 1n=l In

Note that the short hand notation for Y and Y is meant to

show that the form of the densities is identical. The

quadrature components are in fact independent. Eqns (1.138)

and (1.139) illustrate that no conditions need be placed on

the strengths of the sources or relative values of the

2 's. At this point, however, I should caution that ifn

one or two sources are propagating energy via 3 or fewer

i i , , ,, r , i ' I- -
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paths, and they are strong relative to the other sources,

dominant path affects must be considered. Please refer

to Appendix C, and for dominant paths plus diffuse

(Rayleigh) noise see Reference (26].

Continuing from Equations (1.138) and (1.139), the

analysis is straightforward. The resulting densities are

in fact identical in form to the densities for the single

narrowband source as given in Appendix A. The functional

difference is that wherever a2 and v2 appear in EquationsI

(Al-AS) they must be replaced by a1 and a l respectively,

e.g.,

P (FP) .~exp[ Pa' > 0

;)L 2 =a,_

U = -2- 3Z z =z2-Z )  (1.140)
2 a1  PI/ ILc Lc

1 a la 1 1P~kL A)= 4c l 1 Q I Z3/2' 1 Al <a
c 4Ez 1

=0 , c  (1.141)
AL cAL

The most important difference, however, is that now the

densities for A and ; depend upon the 2 's while for a
ln

single source they do not. It should be noted, however,

that if ,'A is the same for all the source/receiver pairs,
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then once aca n A and t are independent of the amplitude

parameters, C 's, and are in fact equivalent to the

densities of A and ; for a single source. Even though all

the sources are at the same or near in frequency the

likelihood that v2 is the same or almost the same may not

be a good one given v2's range dependence [il1 (when the

internal wave model applies, see Section 3.2).

I now consider a narrowband experiment in which random,

background sea noise is present. From the analysis above,

I can write:

Lc

n=l

and (1.142)

Lc
a =a 2
11 1 n=l Inn

where Lc is now the number of noise sources in the analysis

band and a2 and V2 are the signal parameters, and the a21 in

and v are the noise related parameters. I now make the

assumption (perhaps bad) that v2 is a constant for the
2 c 2 adIdfn

signal and the noise. Thus, a2 a V, and I define

az 
2 r ai , which is one half the sta mean square noise,
N0  n=l n

and therefore:
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a 2  a ~2 + a2
S 1 N

0 (1.143)

aI a z + ZV z
a1  1 N0

1 N O

(1.144)

ziI 2 V2(L-NR + 1)

02
wr* 1 long time average mean square signalwhere SNR - long time average mean square noise

N
0

Applying Equations (1.144) to the densities and statistics,

e.g., Eqns. (1.140) and (1.141), the effect of background noise

can be accounted for. It is clear that SNR will be a function of

the analysis bandwidth, and that noise levels should be

measured in the absence of the signal. By narrowband I mean

the signal bandwidth B should be <<2v which in turn should be

<< l/T where T is the observation time and the analysis band-

width B A should not be so large that the frequency dependence

of v2 would cause v2 to vary significantly across the band.

If for other reasons, i.e., range dependence, the

V2 V 2 , then
n

I I1 N
but (1.145)

2 2
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Lc
where SNR' a2V 2 / 1 C 2  2

n=l n n

Finally, if one is analyzing over a wide band and the

components are disjoint but each is a sum of one or more

sources at that frequency, then all the results of the

frequency disjoint analysis can be applied with az replaced

by a and v2 replaced by a,'a 2 where these parameters are

defined as given in Equations (1.138) and (1.139).

For noise which is continuous over the analysis band,

the statistics will be a function of the total bandwidth

and the receiver resolution. All the analysis of coherent

and incoherent (or more correctly, frequency disjoint and

independent) sources apply except now the number of groups

N is given by BA/R where BA is the analysis bandwidth and

R is the receiver resolution. Because the sources within
each group are coherent a2 and az must be found for each

group using Equations (1.138) and (1.139). The groups can

now be considered for purposes of applying the results of

Sections 1.2.1 and 1.2.2 as individual source/receiver pairs,

with the a 's given by the a2's and v 2 s given by the
1 1

azi/i as. In conclusion, therefore, the statistics of the

received signal are a function of receiver parameters as

well as source parameters. For large observation or analysis

time T, and consequently higher receiver resolution, the

analysis of Sections 1.2.1 and 1.2.2 will most probably apply.
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As T becomes smaller, however, coherent effects must be

considered as developed in this section. Careful regard for

the inequalities stated in the beginning of this section

must be applied, case by case, to the data set of interest

and the receiver characteristics, in determining which

analysis applies.

1.2.4 Crossing Rate Statistics

In previous sections I have solved for the joint

densities of amplitude, and amplitude rate for many multiple

source cases. This

allows me, therefore, to solve for the theoretical

amplitude crossing rates for these cases as well.

Following Rice (10] and Dyer and Shepard [15), the

mean crossing rate for the sta rms pressure p can be

defined as

G(p0 ) = J P o  (1.146)

where p0 is the axis crossing level. For L equal

source/receiver pairs, Equation (1.78) is used in

Equation (1.146) and I obtain:

2L-1
V o  exp(- =)

L 0 2
L- (3 / 2 ) r(L)a 2L- (.147)

i " , •1
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Equation (9) of Reference [15) is obtained for L=1.

(Note that U a 2 = aL2.) For two different

sources/receptions Equation (1.146) is applied to

Equation (1.113):

2

3 exp(- T_0o) 10

G 2D( = 2  2  12 f (a +t) exp(-ct)dt (1.148)

11 a12 0

where a = a12V 2

d= a, 22  a 2and11 1 1

C o2a.. 17.
11 12

If I make the change of variables Z = a + 6t the integral in

Equation (1.148) can be evaluated:

(a 2V a .V P 2  v /a2 2_ 1

G2 D(O) a 2 a 2 - 22 expl i 2 2 a 2 2 .z 12
11 12 L 1ii'i - 12 2

3

1 i - [3 0o2 (  1 .- ')l 1 l UI z _) 21
2 a 2 .

1 2i{ F--[2a211 2 2 11 a1 2 a1 1 1 122
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- Y , 1 2z z (1.149)
L 2a1112 111 12 2i

where y(v,u) is the incomplete gamma function [23,24].

Finally, for Case (c) N=2 I apply Equation (1.146) to

Equation (1.128) and

P 2Ll+2L2-1 exp(- 0

0 12
G2(Po) ) Ll+L2-2 r a2L1 2L2

r (L)r(L2 )2 11 12

f J 1  (1-t) 2 +6t)! exp(-ct)dt (1.150)

0

where a, 6, and c are the same as above.

Integrating I obtain [24]:

P 2Ll+2L2-1 exp(- -P
0 12

G2 (POG2 p0) r( L) Ll+L2-2 /n a2L. a2L2
(L +L 2)2 11 12

Sz V 2 2

•..(1.151)

w Li -, L. +- 11 0

2 a.. T. ..
1 1 2;
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where r(x) is the gamma function [241, and 0 (c,,y;xy) is

a degenerate hypergeometric series in two variables (24].

For coherent sources, phase crossing rates as well

as amplitude crossing rates can be found. As with

amplitude, for the multipath phase (10,15]

Gfo 0 IP, (1.152)

Following Dyer and Shepard (15] but allowing for the

effect of many sources at the same frequency, it is easily

shown that

PO

G (p ) V -Tr p exp ME (1.153)Lc 0 a 0 2--

and

G a(1 1 (1.154)

Lc I

Thus,

G(po) Po p2

GO0)

where a and a2  are given below Equations (1.138) and

(1.139) respectively. Allowing for the normalization

- -,
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employed in Reference [151, and the parameters a2 and a2

-the form of Equations (1.153 - 1.155) are identical to

Equations (9) and (10) in Reference [15]. It is also

noteworthy that Equation (1.153) remains

unchanged whether the v2's for all the coherent sources

are the same or not. In terms of the SNR then

G(p ) P 2
0 SNR o 0p- SNR

(8r exp[- H (1.156)
0 1 11SR

I now consider the ratio of Equation (1.155) with

Equation (10) of Reference (151 (the limit of Equation 1.156

as SNR

= SNR exP Z(l+ SNR (1.157)

Thus the effect of noise on the ratio of amplitude

crossing rates to phase crossing rates is a multiplicative

factor given by Equation (1.157) which depends on both the

SNR and the axis crossing level selected.

Finally, if one desires the crossing rates for the

mean square pressure X or the level in decibels A, the

simple substitutions p°  X, and 0o  exp(A /2z), respectively

is all that is required.

-4-.-
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1.2.5 Summary of Results

Because of the many cases, the notational difficulties,

the complexity of the equations, and the plethora of

random variables involved, I will attempt a summary in

the form of a table of the multiple source section to aid

the reader in gaining a little perspective on what exactly

has been accomplished. In Table III, I have compiled

the overall results of the analysis for the various pdf's

of interest in the multicomponent and single source cases.

On the left is the breakdown into cases based on source

structure and signal analysis. Across the top are the

random variables whose pdf's we seek. When a number

appears alone in a box, it indicates the equation number

of the pdf and also that the result is unique to this

thesis. Superscripts (circled numbers) appear in boxes

for comments below, and numbers in brackets refer the

reader to those references in which the equation appeared

previous to this work.

1.3 Finite Bandwidth and/or Modulated Source

In many actual oceanic situations the source does not

exhibit stability in frequency but in fact oscillates or

wobbles about a center frequency which can be characterized

by either frequency or phase modulation. The effect of

IF- -- PRO
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this modulation on the family of single source densities

is analyzed. Even "narrowband" signals have finite though

small bandwidths. I have determined a criterion for

smallness, as well as the bandwidth effect when this

criterion is not met. Furthermore, the analysis presented

in this section reveals a method by which finite

bandwidths and/or source induced modulation can be

determined from the received signal.

1.3.1 Amplitude and Amplitude Rate Densities

In the absence of modulation we can write the multi-

path signal, p(t), under the assumptions of the phase

random model as given by Equation (1.135). When the

source is frequency or phase modulated, we can write

p(t) as

N
p(t) = r [ cos[Wt - M(t) - en ]  (1.158)

n=ln

where M(t) is a function of time which may be random that

represents the modulation. As indicated in Equation

(1.158), it is assumed that source induced modulation

will be path independent which implies that any change in

signal propagation characteristics (i.e., path structure,

or volumetric absorbtion) will be independent of the
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"instantaneous" carrier. This is apt to be so unless the

modulation is extreme. This assumption also applies to

the finite bandwidth effect. The bandwidth cannot be so

large that different propagation characteristics obtain

for the extremities of the signal. Further, it is

assumed that none of the energy in the signal is rejected

because the "instantaneous" carrier is outside the

bandwidth of the receiver. Likewise, for a finite

bandwidth source, it is assumed that the entire signal

bandwidth is within the bandwidth of the receiver. Note

that depending upon the specific temporal dependence of

M(t) the modulation would be classified as either frequency

modulation or phase modulation. This distinction,

however, does not alter the analysis to follow.

I perform quadrature demodulation on p(t) and obtain

the quadrature components:

N
X - Pcos[M(t) + €] = r I cos[M(t) + n ]

n-l
(1.159)

N
Y = psin[M(t) + ] - r [ sin[M(t) + e n ]

n=l

where o and t are the amplitude and phase respectively of

the complex envelope, or alternatively in the terminology

of phase random acoustic propagation the sta rms pressure

---i ,, =
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and multipath phase. Taking the derivatives with respect

to time,

k -r [ M(t) + Sn]sin(M(t) + en]
n-i

(1.160). N
Y - r [ [M(t) + ;n icos[M(t) + 9 n ]n-i

In terms of the quadrature components, Equations (1.159)

and their derivatives, Equations (1.160), I can write:

W (X2 + y2)0'

(1.161)

= (Xk + YY)(X 2 + y) .

As given in Section 1.1, X, x, A, and A can be expressed

4n terms of - and . By applying Equations (1.159) and

(1.160) to Equations (1.161) and making use of

trigonometric identities, it is easily proven that

Equations (1.161) are independent of M(t) and, in fact,

are equal to the result obtained when M(t) AM(t) =0.

Thus, the amplitude, and amplitude rate variables are in

fact independent of the modulation. It also follows,

therefore, that the joint densities of amplitude and

amplitude rate are independent of the modulation.
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1.3.2 Multinath Phase Rate Densities

For the multipath phase rate, the modulation plays a

critical role. From Equations (1.159) it is clear that

the multipath phase with modulation, M' is given by:

-1 Y
t' = tan = M(t) + (1.162)

and, therefore:

M= (t) + (1.163)

This result can also be obtained from the single path

variables alone (the extreme right-hand side of

Equations (1.159)] from which,

Cm = Xz  cos[M(t) + eMt + cs
r{ ~ ~ n (:%(t) + n] At cosSnn-I n=ln

N N+Zsin[M.(t) +6 n ] I [(t) +6 n ]Sine nj 114

n=l n=l

Again, using trigonometric identities, I find that

Equation (1.164) is equivalent to Equation (1.163), in

which ; is given by Equation (1.164) with M(t) =M(t) = 0.

Note that from Equations (1.139), Equation (1.164) is.
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independent of r.

M(t) can be either a known deterministic function of

time or a random process governed by a pdf P.(M). In

the latter case, because A(t) is independent of ocean

parameters, Equation (1.163) reveals that .M is the sum

of two independent random variables. Therefore [14],

P () P,(M)*~ ~ (1.165)

where * denotes convolution. The mean = ,and as 7
M

with an unmodulated source, the variance c =.
"M

If M(t) is a known deterministic function of time,

I define:

Ts

1 I 1/2v
H (4) = (1 + I - M(t) 3/Z
M s 0 V 4

where Ts is the length of the time series (not to be

confused with T, the averaging time of the receiver).

HRs( ) is a continuous histogram and has all the properties

of a pdf, i.e., it is always positive and integrates to

one. This function or pseudo pdf can be employed when

M(t) is deterministic but not periodic for a given ensemble

of time series. Equation (1.166) also applies for

periodic deterministic M(t). "cwever, for periodic

7
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deterministic M(t) in which there is exactly one or n

integral number of periods A(t) can be randomized, treated

as if it were a random variable, and its pdf found

enabling use of Equation (1.165). If there are many

periods in the record, then an integral number is not

required; however, some error will be introduced. As will

be demonstrated by examples below and in Section 1.3.3

for periodic modulation functions, Equatiors (1.165) and

(1.166) yield identical results. For many interesting

problems in the ocean, A(t) may be deterministic but

unknown, the real (nonrandom) parameter estimation

problem [25]. In these situations one will obtain

experimental realizations of H-(¢) from which one is

able to learn characteristics of M(t), as will be

demonstrated in Chapter 3. Also, as will be shown iLn the

figures, some deterministic modulation functions will have

easily recognizable histograms, H*M( ), and in fact

knowledge of HM() is by itself a valuable piece of

information to have.

I shall now consider three analytical examples

illustrating the effect first of sinusoidal phase

modulation, second of uniform frequency modulation, and

third of Gaussian frequency modulation on the pdf for ;.

For sinusoidal phase modulation,
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M(t) = :sin (Ct + 0 s

and thus, (1.167)

M(t) = $Gcos(at + 0S)

I have randomized the phase with s (uniformly distributed

between 0 and 2.), which indicates uncertainty in initial

conditions. I obtain the pdf for M(t) [3),

1 1Pq(M) Tr (S2c2 - A 2)1/2 'I < Sa (1.168)

Combining Equations (1.168) and (AB) in Equation (1.165),

I find

i r dy

PM(x) = V- y (1.169)M 2 _r /7V2 + (x - y)'Z-3- 2-2-=-gZ7

An analytical expression has not been found for this

integral; however, numerical integration is straightforward.

Applying Equation (1.166) with T. = 27n/a (n is any

integer) and M(t) as given by Equation (1.167) with s= 0

(don't forget to exploit the symmetry of the cosine)
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yields Equation (1.169) as well. When x= 0 in

Equation (1.169), the integral can be evaluated:

p;M(0) 1 E [ 8a (1.170)M 7rV-7272- 7/2, /V- 2 -+-7-' 2

where E[r/2, k] is the complete elliptic integral of the

second kind.

It is possible to make some progress in solving for

P; (x) if I make use of the convolution property of

Fourier transforms or characteristic functions. For

independent random variables [14],

j ~M (W) = M.X(WM;(W)(11)

where M () is the Fourier transform or characteristic

function of the pdf of random variable x (141. M;(w) is

given in the Appendix under Equation (A8), and for the

sinusoidal density Equation (1.168) (24],

4M,~w (we Cy

where J (z) is the Bessel's function of zeroth order.0
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Thus, by exploiting symmetry and taking the inverse

transform of Equation (1.171),

P (x)= _ K (W.w)j S(a)cos wx dx (1.172)

0

where K1 (z) is the modified Bessel function of order one.

Expanding the cosine and integrating term by term (241,

S -1n x2n 12
P;M(X) = V n=0 2 n) (n + (2n- 1)

2n+3 2n+1 1 2

2E ' 2 1 -] (1.173)

where (2n- i)!! = 1.3.5 ... (2n-1); (-1.!! 1, and

F(a,b;c;z) is Gauss's hypergeometric series (241.

Unfortunately, Equation (1.173) converges only for

Sa<v and x<v. When aa=v,

j.
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n 2n
P$ Cx) = T 1 ( 2-f) ( 2n,P x 7 n1-2 [ ( 2n - I).r!

V n VMn=0 (2n)!

1 2.
r r -y) r(.+.)r(-2-T) (1.174)

As with Equation (1.173), Equation (1.174) converges only

for x < v. P*(;) is plotted in Figure II for the case of

no modulation, Equation (AS), and for various values of

$a relative to v using Equation (1.169). Applying

Equations (1.170), (1.173), and (1.174), when applicable,

revealed that the error of the numerical integration of

Equation (1.169) is approximately 1%.

For uniform frequency modulation, M(t)= Mt and

M(t) =M, where M is a uniformly distributed random

variable:

1/2A IMI < A
PA(M) = (1.175)

0 otherwise

and A is the maximum excursion from the carrier in Hz,

thus, 2A is the bandwidth of the modulation. This

characterization of !4(t) would apply, for example, to a

-.. .. .. ...
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deterministic M(t) such as a saw tooth. As before, I

apply Equation (1.165) using Equation (1.175) and (AS), to

obtain:

;(x) = 4 x+A x -A (1.176)
'M 4A + (x+A) 2- V72 +(x-A) 2

Equation (1.176) is plotted in Figure 12 with no modulation

(Equation A8) and for various values of A relative to v.

For the final example, Gaussian frequency modulation,

P (A) = 1 e2(1.177)

G

where a2 is the variance of the modulation. As before,
G

I convolve Equation (AS) this time with Equation (1.177)

and

2 O3
P;(X) 2 W2-  (I +y2) - exp(x -(xy) ]dy

G

S. . (1.178)

As with sinusoidal phase modulation, I have been unable to

solve the convolution integral analytically. However,
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applying the characteristic functions, I obtain an

alternate expression of Equation (1.178):

P; (x) = e K (wv)cos wx dw (1.179)

Expanding the cosine, I obtain,

P. (x) = ( 2 )' (x 2n 2n 2n + 1)

(2 n7 2  2M aG r/2n-O FG

exp W 2  (1.180)

=4 1 1 2a-)
G

Or, alternatively, expanding the exponential in

Equation (1.179):

1 1 OGa 2n
P; (x) F= rj (ni r@ 1~) ,(n 1 )

mn..0 n! V 22

F(--n+3, n+1 2. x 2 (2 2 2 -) lll
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where W (z) is Whittaker's function, and F(a,b;c;z) isV,LL

Gauss's hypergeometric series.

Finally, Equation (1.176) will also model the effect

of a nonmodulated, but finite bandwidth source if the

conditions stated in the beginning of this section hold.

It is clear that as long as the energy is uniformly

distributed on the average between f - A and f +A.
c c

Where fc is the carrier frequency, then Equation (1.176)

applies, and the bandwidth, B, is given by B= 2A. A

glance at Figure 12 reveals that the effects of the

bandwidth on the pdf for $ can be neglected if B << 2v.

The above analysis also reveals that modulation coupled

with bandwidth effects are additive. Thus,

P.s~ P; p($)*p; ( )*P;( ) (1.182).
IMB M B

where PB(r) is the pdf of the bandwidth which we have
OB

assumed is uniform between ±B/2, and P* (c) is the pdf
OMB

for € when a narrowband signal is modulated and the

criterion B<< 2v is not satisfied.

Taking the three examples of modulation used above,

and coupling them with the bandwidth effect, I obtain for

sinusoidal phase modulation,

-i .j
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So
P Cx) 1 1 x + B/2 -

MB 2Bwr J) /W 2  ( / -

x vv+( B/2

x - B/2 - dy (1.183)/v-z + (x - B/2 - y) 2-

or,

=x W 2v K(w)Jo(a)cos wx sin dw (1.184)
MBr TF 1' o 2

0

For Gaussian frequency modulation,

P (B W exp[- 21 (x- y) 2 ]
MB2 2 Wa

y + B/2 y - B/2 tI I I~dy ("15
{2+ (x + B -/2) 2-

or

* x) e Kl(wv)coswx sin - d. (1.186)

iMB 2
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and for uniform frequency modulation,

P;(X) 2 + (x +A+ B/2) 2 - - 2 + (x+A- B/2)Z-

+ / 2 + (x- A B/2) 2  _ 2 + (xA+B/2)2}

. (1.187)

Finally, it should be noted at this point that because

a finite bandwidth signal is indistinguishable from a

"narrowband" signal which is experiencing extremely rapid

uniform frequency modulation as indicated above, the effect

of the bandwidth, as with modulation, is felt only by $,

the phase rate, and the amplitude variables remain

unaffected.

1.3.3 Crossing Rate Statistics

For path independent source induced modulation, I

have shown t-hat the amplitude, amplitude rate, and joint

densities of amplitude and amplitude rate are unaffected

by the modulation. It follows, therefore, that G(pO )

will be independent of the modulation and will be equiva-

lent to the nonmodulated single source result given by
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Equation (1.18).

For a modulated or finite bandwidth signal, G( O )

is as expected critically dependent on the parameters of

the modulation and the bandwidth. To find G( O ) it is

necessary first to solve for P ,,(0,O) and this in turn

is crucially dependent upon the exact nature of the

modulation or bandwidth. For deterministic modulation,

I consider Equations (1.162) and (1.163). The joint pdf

for and without modulation is given by [8,9]:

1 10 ,' 0 4- = 4-.- %2 3/2 ' o .. 27 (1.188)

Making the change of variables given by Equations (1.162)

and (1.163) I obtain

T
1 I 1

H dt (1.189)41rv4T s f 2 3/2

0

For the interval 0 to T min[M(t)] < t < 2, + maxiM(t)]

and ;!, < 0. Note again that the H function has all the

properties of a pdf. To find the phase crossing rate
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G M( 0I apply Equation (1.152) and

TTS CO

G 0 dt do (1.190)GM(o = 41TT s  " 0 ( W 3/2
0 - t1 + (  t))

Rewriting Equation (1.190), I obtain

T r
S

G 0 47TbT/5  d
GM(O 0 4T--T s [v' + A(t) 2+ 2A(t) + 2132d

0 o

o 1*
0

Performing the integrations over 0:

T
S

GM(O o ) = /' . (t 2 - dt (1.192)

0

This is as far as one can proceed without the exact form

of M(t). (Note that if Mi(t) 0 I recover the no

modulation result.) Equation (1.192) can also be used to

.!

-- * .~-r - -- ' ~
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find the phase crossing rate when nonstationarities make

v a function of time as well. Obviously, however, ')(t)

must be known. If M(t) is a random process or the

modulation is periodic and exactly one or more integral

number of periods are on the record (if there are many

periods the number need not be integral), then the

probabilistic approach used in the previous section can

be applied here as well. From Equations (1.189), (1.165),

and (1.166),

p - 1 (1.193)
SM -T .0(m

For sinusoidal phase modulation, I use Equation (1.169)

in Equations (1.193) and (1.151) to obtain

V x
GM(¢o )  dxdy_: f-V T7'2 + (x -yJ 2T'-

. . .(1.194)

Integrating first over x I obtain

Sa

GM(O ) = Jy (1.195)

0

........
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The remaining integral is a complete elliptic integral

of the second kind:

GM1 /72-62;-V2 E[" , r] (1.196)GM- o{ 0 =T T--

where

r=

For either 5 or a - 0, GM(o) for no modulation is

obtained.

To demonstrate the equivalence of the probabilistic

approach and the deterministic approach given by

Equation (1.192), I consider again sinusoidal phase

modulation:

M(t) = Ssin(at + s )

and

A(t) = Sacos(at + S)

Assuming I have exactly n cycles,

2n r
-J

G1 ) / 2 -- 2 2 COS"t dt (1.197)M 0 2T 2nTJ
0
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I observe that the integral over one cycle of a cos 2x is

equal to four times the integral over 0 to 1/2. Applying

this observation to Equation (1.197),

/1 4na 7 12 0

M2 - 2,r2niT J t
0

and therefore

7/2a

GM(a) = V J z dt (1.198)

I make the change of variables x = at and apply the

trigonometric identity cos 2x 1- sinzx in

Equation (1.198) and simplifying,

S/2G 0~ /V--P-2- l- "[27/27 -22)F s23F dxGM(,O) j d

0

.(1.199)

The integral in Equation (1.199) is the definitive form
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of the complete elliptic integral of the second kind and

Equation (1.196) is recovered exactly.

For Gaussian frequency modulation, Equation (1.178)

is applied and

GM(*°) - 2/T -- (v2+yZ) 3 / 2  x exp[- G(x-y)z]dxdy
2 -' --Tr (vO

G 0

.(1.200)

Performing the integration over x yields

G(o)3/2 :/2 D (-A) + D_2 () JdvM0 (270 3/2 (,z+yz)3/ '-2 a TG

i • (1.201)

where Dp (z) is the parabolic cylinder function [243. I

now apply the identity [24]

2 z 2
D (z) =22 e -  / M( - 1 Z2  z l 3 •

- M(l , }-~-
p 10 2'2' 2 TA) 222

2
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to Equation (1.193) and I have

2

G(°) = G)32 M(1,, )dy (1.202)
iMoi 0 (V 2+y) G

where M(a,b,z) is the confluent hypergeometric function.

The final integral in Equation (1.202) must be performed

numerically.

For uniform frequency modulation, direct use of

Equation (1.176) yields a value for G( a) = C. This

result is not a physical characteristic, but rather a

consequence only of the mathematical form of

Equation (1.176). The integral leading to Equation (1.176)

is

A

4A ( V X 3/2" dy (1.203)
M f-A

Applying Equation (1.203) to Equations (1.193) and (1.152)

yields

A

GM(°) 4-A (v + (x- y) -)3/2 dxdy

-A o
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I make the change of variables t = x-y and

A

G V2 f t+y dt dyGM() 0 4-rA /72$ [-
-A -y

Performing the integration over t yields

A

GM(,o) 1 _y + j dy

and finally I obtain the result

GM(¢o) = - in L V j + /-2---- (1.204)M 0) 4TA A72 2 A] 4i

In the limit as A - 0 Equation (1.204) converges to the

no modulation result. Note if I let A= B/2 in

Equation (1.204) then I have exactly the phase crossing

rate for a finite bandwidth non-modulated source.

The crossing rates for modulated signals with band-

width have not been solved; however, the procedure is quite

- .--..
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straightforward, though the integrals may not be.

I now consider the ratio of amplitude crossing rates

to phase crossing rates. Dyer and Shepard [15] obtained

this ratio for the narrowband, no modulation, single

source:

G(p) o  2
0 PO 0(105

- (87) - exp(- 2a, (1.205)G( 0)  7-i

Equation (1.205) is independent of v and depends only upon
a2 which, being a measure of the energy in the signal,
1

is a controllable parameter unrelated to oceanic phenomena.

However, non-stationary behavior of a2 due to ocean

dynamics will affect the ratio given by Equation (1.205).

Likewise, if the source is modulated or has a bandwidth

which is not << 2v then the ratio given by Equation (1.205)

will be affected. For these cases, the ratio G(p )/G( o
0 0

will be a function of a2, V2, and parameters of the

modulation. Adopting the approach in Reference [15],.

I obtain

4 P) (8.) Ca1 P (Po) (1.206)

where, for sinusoidal phase modulation,

~Ij
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C V , r - (1.207)
2V-57277 - Elf, r]

for uniform frequency modulation,

C = (1.208)Uz In[ u + A/' 2 
+

2 -;- - - A

for Gaussian frequency modulation,

C [21T G (0 ) ] -1 (1.209)

where GM (0 ) is given by Equation (1.202), and finally

for a finite bandwidth, non-modulated source C is given

by Equation (1.208) with A=B/2. Except for the finite

bandwidth result, great care should be taken in applying

the formulas in this section to insure that the actual

modulation fits the kinds of modulation assumed here.

However, the procedure developed in this section can be

applied on a case by case basis to any kind of frequency

or phase modulation to determine the phase crossing rate

factor.
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CHAPTER 2

COMPUTER SIMULATION

A computer simulation of phase random multipath

propagation was originally developed for two reasons.

First, in the course of analysis of the multiple source

cases it was felt that a computer simulation would provide

confirmation of the rather complicated analysis when

data were unavailable or difficult to obtain for the case

in question. Second, when an analytical impasse was

reached the simulation could provide insight into the

nature of the solution, thus aiding in the analytical

process. The simulation fulfilled these two objectives

not only as originally intended in the area of multiple

sources but in all aspects of the theoretical develcpment

presented in this thesis, as well as providing confirmation

of some of the basic precepts of the phase random model

of acoustic propagation.

2.1 Computer Model of Phase Random Multipath Propagation

A computer simulation which generates random samples

from a phase-random multipath process has been developed.

Currently there are two versions. The first, called

RANDPHASE, simulates up to 50 equal intensity, equal v

components, including sinusoidal phase modulation, uniform

Imig=== ,.
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frequency modulation, and bandwidth effects on phase rate

for a single source. The second, called BURMRAN, is

capable of handling an arbitrary number of groups of

unequal intensity but equal V2 , for the amplitude and

amplitude rate variables. Both programs are written in

FORTRAN IV and were run on an Interdata Model 80 computer

with an DMLAC display processor. The FORTRAN listings

for RANDPHASE and BURXRAN are contained in Reference [27].

The following algorithms are applied to generate

samples for the amplitude and amplitude rate variables:

L NNrL = 2, cose sine
i=l n=i n=1 n

XL = [ 2ri[ sine n 1 cose
i=l [ =i n=l n ni

N N
I cose 1 esine

n-i in=l i

PL= XL
1/ 2

2 X -1/2
5L 2 A

.5 ..
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AL = 10 logl 0 XL

AL = [10 logl 0 e] L(L/XL (2.la-f)

where ri is the single path amplitude for the ith source,

L is the number of sources, N is the number of paths,

e the single path phase, and n the single path phaseni  ni

rate. For L=l, the single source, samples of the

multipath phase 0 and the multipath phase rate $ are

generated. Equation (1.164) is used to generate the

samples of €. The input parameters to the program are

9A, L, N, A (or equivalently, B/2), a, c, and I, the

number of samples desired. For RANDPHASE the ri are

equal and are set to one for convenience, though

initialization to some other value is straightforward.

For BURMRAN the array r must be specified.

Each program uses two random number generators

employing a machine independent congruence technique (28].

One is used to generate uniformly distributed random

numbers between 0 and 27 for en' and the other is used to

generate samples of ;n" It is assumed that en is

uniformly distributed between ± /) v, thus in the limit

as N , E[ n 0 and En 2  = 'A. Application of the

=v"-
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progra. revealed that if the number of paths is greater

than three, phase random multipath properties are

obtained. Because of the central limit assumptions

inherent in the phase random model [] (e.g. N> 3), the

exact nature of the density for Gn is unimportant.

nANDPHASE was run with e distributed normally without

any change in the results.

The number of independent samples of 6 and
n n

required for any given simulation is given by the product

of L, N, and I. For most of the simulation runs

I = 600 samples. Where L and N are large, the number

of independent samples of 8 and e can become quite large.n n

One run of BURMRAN simulating the N= 15 problem of

Reference [4] required %, 400,000 independent samples of

9 and n . The maximum integer that can be accomodated9nn

on the Interdata 80 is 32,767. I performed a run test

on the system random number generator (which employs the

linear congruence method) and for some primes the maximum

string of unrepeated numbers was 8192, clearly inadequate.

In order to increase the cycle lengths the machine

independent congruence method is used. This technique

artificially increases the maximum allowable integer

number with factors appropriately segmented so that

numerical overflows can be computed without machine

LMt
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overflows. The cycle length is greater than 107, and for

1.5 x 106 samples generated by this method, the

Chi-square goodness of fit test [29] for uniformity was

passed at the a = .05 level of significance, though only

by a small margin. It is true that the leftmost digits

are the most random and that for large numbers of samples

some correlation occurs as more of the rightmost digits

are repeated. Table IV, reproduced from Reference [281,

gives the repeat characteristics for the two sequences

or generators used. Table IV indicates the randomness

of the generator as a function of cycle length or number

of samples-. As more and more samples are taken, i.e.,

the cycle length becomes larger, more and more of the

rightmost digits are repeated which can result in a

correlation that will introduce some error in the

overall simulation results. Because the repeat cycle

length is so large, however, for most simulation runs

this error is small.

When modulation or finite bandwidth effects are

simulated, the Interdata 80 random number generator is

used in addition to the two described above. Because L=l

for these simulations the large number of samples for n

and n is not required.

When the programs are executed, histograms are

:-. - . ... ... . .. .._ . .. .... . . .. . .... ... . .. .... .-i .- . .. . . . . .al
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TABLE V

Repeat characteristics of the random number
generater for the two sequences used.

Cycle Sequence One Sequence Two

0 735776465527 8 311037552421 8

8 1 062221556427 a 113326416521 8

8 2 650107434527 3 653303553421 3

3 617512155527 8 514633562421 8

34 65527 8 52421 8

8~ 465527~ 3 52421 8

8 6 6465527 8 7552421 3
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produced by separating the range of samples for each of

the variables specified by Equations (2.1) and (1.164)

into 25 equally spaced bins. In RANDPHASE each histogram

is then plotted along with its respective theoretical

density and the Chi-square goodness of fit test is

applied. The area under the theoretical curve is

computed numerically using the trapezoidal rule, each

cf the twenty five bins being further subdivided into

16 intervals each. The expected frequency is then equal

to the number of samples times the area. Bins in the

tails are grouped such that the minimum expected

frequency is 7. Thus the number of independent class

intervals (a function of the variable, number of sources,

paths, etc.) usually varies between 15 and 25 which is

close to the criteria specified by Bendat and Liersol (291

for ,, 600 samples. The Chi-square statistic (;2) is

computed and compared to the pass/fail value (X2: .05),

where n indicates the number of degrees of freedom of

the statistic and .05 is the level of significance. The

hypothesis is eccepted if Xz < X2 : .05. The number ofn

degrees of freedom n is obtained by taking the number of

class intervals and subtracting 1 + S where i is the number

of independent parameters that are varied to fit the pdf

to t'-.e histogram (e.g. 2 = 0 for the uniform pdf and 3 = 1
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for the Rayleigh, Gaussian, and Longuet-Higgins pdf's).

It should be noted that the theoretical densities

were not least-squares fit to the histograms. Given the

input parameters, we know a2 from Equation (1.2), and

v is obtained by taking the expected value of 62 from
n

the computer generated nIs (which is always within awihi

few percent of the input value of v). The theoretical

densities are plotted and the samples fall where they may.

In addition to the output on the graphics display

a printout for each variable for each run of the simulation

includes: the variable simulated, the number of sources,

paths, samples, number of expected and observed frequencies

for each bin', including an overflow bin, the observed

and theoretical mean and variance, the range of values

obtained, and the actual Chi-square statistic and the

pass/fail value.

2.2 Simulation Results for a Single Narrowband Source

Examples of the results of the computer simulation

RANDPHASE for a single, narrowband, non-modulated source

are given in Figures 13-36. The figures are plotted by

variable for N = 4, 5, and 12 paths. For all these runs,

the input value of v is .007 rad/sec and I = 700 samples.

Table V compiles the Chi-square statistics (;(2) for each of

++
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Results of the hi-square test for tlhe KANDPHASE
simulation of a sinle narrowband, non-modulated
source. For X < .05 the theoretical odf
passes the test at The .05 level of significance.
The units are the same as in the figures.

Mean Std. Dev.
Fig. Variable x2  x2 : .05 Y

n Theory Data Theory Data

13 x 19.36 25.00 4 4.00 3.64 4.00 3.24
14 x 18.59 25.00 5 5.00 4.85 5.00 4.31
15 x 8.62 25.00 12 12.00 11.19 12.00 11.34
16 27.44 23.68 4 0.00 0.00 0.04 0.03
17 19.93 23.68 5 0.00 0.00 0.50 0.46
18 7.84 23.68 12 0.00 0.00 0.12 0.11
19 p 24.02 28.87 4 1.77 1.71 0.93 0.84
20 P 27.68 28.87 5 1.98 1.98 1.04 0.97
21 P 12.85 28.87 12 3.07 2.96 1.60 1.56
22 14.37 18.31 4 0.00 0.00 0.01 0.01
23 9.79 23.68 5 0.00 0.00 0.01 0.01
24 a 6.50 26.30 12 0.00 0.00 0.02 0.02
25 A 21.29 22.36 4 3.51 3.30 5.57 3.63

26 A 11.24 22.36 5 4.48 4.55 5.57 5.43
27 A 9.00 22.36 12 8.28 7.99 5.57 3.46
28 A 10.61 26.30 4 0.00 0.01 0 0.20

29 A 15.36 26.30 5 0.00 0.00 0.11
30 A 25.96 26.30 12 0.00 -0.01 0.11
31 20.64 36.42 4 7r 3.16 !.81 2.76
32 37.43 36.42 5 r 3.21 1.81 1.78
33 13.07 36.42 12 , 3.20 1.81 1.80
34 23.64 26.30 4 0.00 0.00 0.01
35 24.60 26.30 5 0.00 0.00 0.01

36 9.36 26.30 12 0.00 0.00 0.02

M
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the figures and the X2 : .05 in which n is the number of

n

degrees of freedom, which is equal tc the number of

class intervals minus one (recall that the densities

were not fit), and .05 is the level of significance.

For X2 < X2 : .05 the theoretical density passes the

Chi square test. Also shown in Table V is the

theoretical value of the mean and standard deviation and

the measured values from the computer generated "data".

First, note that all the theoretical densities match

the histograms very well as indicated by results of the

Chi-square test. Particularly note that the pdf's for

X and A given by Equations (1.4) and (1.7) respectively

are indeed supported by computer simulation. Of the

24 examples shown, only two fail the Chi-square test.

All the pdf's in Figures 13-36 are the limiting densities

as N . The results of the simulation for N = 2 and 3

paths (including further analysis of this case) are

given in Appendix C. Upon comparison with the results of

Appendix C, it is quite acceptable to assume that for

N > 4 paths phase random multipath propagation is

obtained. It is true that for N = 4 paths did fail

the Chi-square test but this is only one out of eight

variables. It should be noted that for N = 2 and 3 paths

the limiting densities for seven out of eight of the

--- ---------



-185-

variables (the muitipath phase p is always uniform)

failed the Chi-square test (see Reference [27]), thus the

justification for choosing N > 4 as the required number of

paths is evident. The failure of for the 5 path case

indicates perhaps a lack of randomness or a correlation

for that particular cycle length in the random number

generator. Though the results on the average get better

as N becomes large, as indicated in Table V, (except

curiously enough for A), after 12 paths the results

are approximately constant indicating that the

correlation in each of the random number generators is

now the limiting factor. This assertion follows from

consideration of N = 30 [27] in which by the way X2 for

A is 4.49, and x2 : .05 = 26.30. in addition to

containing the other simulations not shown in the figures

nor mentioned above Reference [27] also includes the

more detailed printout mentioned earlier. It is

interesting to note that even when phase random conditions

are met for the single source the pdf for p always appears

to be among the worst performers while is always among

the best. This result was first noted by Hamblen [9]

when he investigated ocean acoustic data. Because this

result is repeated in the simulation, it appears to be

a function of the statistical nature of the variables, as
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well as the non-stationarity of a2 when analyzing real

data.

2.3 Simulation Results for Multiple Sources

Figures 37-42 are the results of a simulation run

with 20 equal intensity, equal v2 receptions, 5 paths,

and I = 600 samples. The theoretical densities are given

by Equations (1.19), (1.67), (1.79), (1.80), (1.83), and

(1.84) respectively. The results of the Chi-square test

are tabulated in Table VI. Also shown are the means

and standard deviations as predicted by the theory and

observed in the simulation. With one exception, the

computer simulation agiees well with the theoretical

predictions. One of the important results of the

analysis of the equal intensity, equal v2 case
(Section 1.2.2.1) is that P (0) is independent of the

number of sources. Figures 24, 43, 44, and 40 are

examples of P.(A) for 1, 3, 4, and 20 equal intensity~p

(a2 = 2.5), equal v2 (v = .007 rad/sec) sources.
1

Figures 43 and 44 passed the Chi-square test, and the

histograms clearly support this prediction as well.

As a final example of multiple source simulations,

I treated the N= 15 group problem of Reference (4]. As

was noted in Section 1.2.1.4, and illustrated in Table I,
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TABLE -VI

Results of the chi-square test for RANDPHASE
simulation of 20 equal intensity (:2 - 2.5),
equal v sources with N = 5 for each. The input
v was .00700. Actual v was .00699 rad/sec.
The units are the same as in the figures.

Mean Std. Dev.
Fig. Variable x z  X Z: .05

Theory Data Theory Data

37 x 9.26 26.30 100.00 99.86 22.36 20.81

38 x 17.01 23.68 0.00 -0.01 0.22 0.20

39 11.08 26.30 9.94 9.94 1.11 1.40

40 p 19.62 18.31 0.00 0.00 0.01 0.0!

41 A 15.26 25.00 19.89 19.90 0.98 0.93

42 A- 13.53 26.30 0.00 0.00 0.01 0.0

4
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the first eight groups are the most energetic. I

applied BURMRAN therefore, with 123 sources, the

appropriate r array, 5 paths, I - 600 samples, and an

input v of .007 rad/sec. The results are shown in

Figures 45, 46, 47, and 47a for X, , A, and

respectively. In Table VII I have listed the Chi-square

results and other pertinent data. The theoretical

densities are given by the Edgeworth's series approximations

Equations (1.45), (1.108), and (1.53) for X, ', and A

respectively. For I have plotted the Gaussian using

the variance obtained from the data (the curve was not fit).

The excellent performance confirms the assertion made

in Section 1.2 that even for the most complicated

realizations of Case (c) the pdf for" will be Gaussian

in which the variance is in fact = E(D2]. The results

for X and A are not very good (once again the rate

variables out-perform the amplitude variables). The error

appears to be in underpredicting the mean as indicated

in Table VII. However, these results should be inter-

preted in light of the very large number of .samples

required for 8n and 6n (369,000 for each) certainly

introduced some correlation error due to the repeat

characteristics of the random number generator (see

Table IV). Both en and n barely passed the Chi-square
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TABLE VII

Results of the chi-square test for BUPIRAN
simulation of 123 different source problem.
The units are the same as in the figures.

Mean Std. Dev.
Fig. Variable x 2 '2 ..05

Theory Data Theory Data

45 x 36.46 23.68 5.72 5.80 1.65 1.43

46 j 18.72 23.68 0.00 0.00 0.02 0.01

47 A 36.34 27.59 7.36* 7.51 1.46* 1.07

47a 13.05 30.14 0.00 0.00 -- 0.003

*From equ. (1.60a) which is the Gaussian assumption. Note

that these numbers should not be compared with those given
in Section 1.2.1 because this simulation included only the
first 8 groups so there will be a slight difference in the
mean values (see Table I).

I _ _ _ _ _ __ _ _ _ _ _
__ ".. .. :=--_ - -'W L , ._ ,, O " ;II
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test with results of xz = 994.16 and 981.53 respectively,

and Xn2: .05 = 1019.94. In any case, the non-Gaussian
n

skew is certainly evident in the histogram in Figure 45,

once again dissuading the Gaussian assumption in favor

of the Edgeworth's series.

2.4 Simulation Results for a Finite Bandwidth

and/or Modulated Source

Figures 43-51 are examples of the RANDPHASE

simulation of M when the source is undergoing varying

degrees of sinusoidal phase modulation. The histograms

are plotted with Equation (1.169) (Note that v and 3a

are both given in rad/sec). Figures 52-55 are examples of

varying degrees of uniform frequency modulation, or

alternatively varying amounts of bandwidth on (b, The

histograms are plotted with Equation (1.176) (Note that

v and A are both given in rad/sec). In Table VIII i

have compiled the results of the Chi-square test, and the

values of $a, A, or B, as appropriate. All these

simulations were run with an input value of v = .007 rad/sec,

5 paths, and I = 700 samples. With the use of Table VIII

compare Figure 52 (for B=v) and Figure 53 (for B=2v),

with Figure 28, the non-modulated pdf for . This shows

quite clearly again that only for B << 2v can bandwidth

effects be neglected. As with the other simulation

4.
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TABLE VIII

Results of Chi-square test and other data for the
RANDPHASE simulation of OMfor varying degrees of
modulation and bandwidth with N = 5 paths.

Fig rad/sec rad/sec rad/sec rad/sec

48 19.30 23.68 .0070 - - .0011

49 31.55 23.68 .0070 - - .0070

50 12.13 23.68 .0070 - - .0210

51 22.39 28.87 .0070 - - .0840

52 25.82 26.30 .0070 .0035 .0070 -

53 12.72 23.68 .0070 .0070 .0140-

54 17.62 23.68 .0070 .0210 .0420-

55 22.76 28.87 .0070 .0700 .1400-
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results, the fit of the theory to the computer data is

quite good with only one of the eight runs failing the

Chi-square test.

1 -
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CHAPTER 3

DATA ANALYSIS

I have analyzed two sets of data from acoustic

experiments in the ocean. These data are compared with

the theory presented in Chapter 1. In Section 3.1, data

from an experiment performed by R. Porter and R. Spindel,

near Eleuthera [12] are shown among other successful

comparisons to support the theoretical pdf's for

amplitude rate.and level rate derived for the first time

in this thesis. Also, the analytical results of the

modulation theory derived in Section 1.3 explain heretofore

unobserved phenomena of the Eleuthera data accurately.

In Section 3.2, data from the CASE experiment [131

ccnducted in the Pacific are investigated in general,

with special emphasis in light of the modulation theory

of Chapter 1. Furthermore, these data provide more

insight into the parameter v2 and reveal, as well,

shortcomings of our current understanding of this vital

ocean acoustic parameter and its driving mechanisms.

3.1 The Eleuthera Experiment

Data made available by the Woods Hole Oceanographic

Institution were acquired during a long-range acoustic

propagation experiment conducted near Eleuthera (12].
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The data analyzed consisted of four records (see Table IX)

in which two cw signals, one at 220 Hz, and one at 406 Hz,

for each record were transmitted from Eleuthera to

drifting sonobuoys approximately 300 km northeast towards

Bermuda. A Doppler position-tracking system (30] was

used to remove mean multipath phase-rates due to

sonobuoy motion. These data were also analyzed by Dyer

and Shepard (15] and Hamblen [9].

TABLE IX

Log of the W.H.O.I. Fluctuation Data

Record Date Time (GMT) Record Length (h)

447 13 Sept. 74 1900- 0310 8.16

448 12 Sept. 74 0402- 1204 8.05

449 11 Sept. 74 1800- 0145 7.75

424 11 Sept. 74 0644- 1527 8.72

I
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3.1.1 Analysis of the Single Source

From the original digitized time series of pcos and

psino, time series of A, , and $ for the two frequencies

are produced for each record. The phase data were

analyzed previously by Dyer and Shepard (15] and

Hamblen [9]. Details of the phase unwrapping routine

can be found in Reference (15). Histograms are then

generated from these time series. For the histograms of

A and j, Equations (1.7) and (1.4), respectively, are fit

such that the value of v2 and olv, respectively, minimize

the Chi-square statistic. The value of vz for each run

is also obtained by fitting Equation (AS) to the

histograms of . The values of v2 obtained from

agree closely, as expected, with those obtained previously

by Hamblen [9]. However, the value of VZ obtained from
by fitting Equation (1.7) is smaller by a factor of

almost 2 in every case. This can be understood as

follows. As the analysis of Section 1.3 shows, any

finite bandwidth effects or carrier instabilities, or in

this particular case, any errors in the Doppler

position-tracking system, would manifest themselves in

"spreading" or increasing the variance of while leaving

unmolested.

To test this explanation further, v2 is obtained for

-----
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each record by taking the ratio of cv 2 to a, parameters

which were found previously [9] by fitting Equation (Al)

and (A5) to histograms of p and , respectively. Also,

V2 is obtained by taking the value of C2 v from the fit

of Equation (1.4) to the histograms of and dividing

by the previously found values of a2 [9]. If the

reasoning is correct, then these values of v2 should agree

with the values of v2 obtained from A for each record as

they are all derived from densities which are insensitive

to angle modulation or finite bandwidth effects. The

results are tabulated in Table X, which shows that

without exception these values of v2 agree to within 33%

or less and, furthermore, they are all as hypothesized

less than the values of v2 obtained from .

Except for Record 424, the values for v obtained

from A, noting the square root range dependence predicted

by Dyson, Munk, and Zetler [11], are reasonably consistent

with the values for v obtained previously by them for

the Eleuthera to Mid-station and the Eleuthera to Bermuda

transmissions for the 406 Hz source, while the values

of v obtained from € are not as consistent (see Table XI).

Why run 424 exhibited the larger values for v in all

cases (see Table X again) is unknown.

In order to obtain a measure of the bandwidth of the
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TABLE X

The values of V 2 obtained from the time series and
histograms of the amplitude densities are compared
with the values of v obtained in fitting
Equation (A8) to the histograms of $. The values
of A, the half-bandwidth measure of the
"modulation" is tabulated for each run in the last
column.

z rdZ/ecZ x 1-4)

Record Freq. V2 radz/secz (x 10-4

(Hz) a~v1 V A alll A, mHz CG' MHz1 1 1 1v/G')

220 1.8 1.5 2.0 4.7 3.3 2.0
447

406 3.5 3.6 4.1 7.9 4.3 2.6

220 6.7 8.3 6.1 8.7 2.2 1.3
448

406 2.9 2.4 3.0 7.1 4.4 2.7

220 2.4 2.4 2.7 4.4 2.6 1.6
449

406 3.1 2.4 3.6 7.6 4.4 2.7

220 10 12 11 15 2.8 1.7
424

406 11 11 15 24 5.8 3.6
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TABLE X:

The average values of v in mHz for the 406Hz
source for Records 447, 448, and 449
obtained from $ and A are compared to the
values of v obtained by Dyson, Munk, and
Zetler (DMZ).

A DMZ DMZ

Mid-Station Bermuda

Range (km) 300 300 550 1250

Measured Equ. Ray Mix Measuredvin mHz 4.4 3.'.0 2.8 (18) 2.6 4.0

2.2

- t 416
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modulation in these data, I fit Equation (1.176) to the

histograms of € using the values of v2 obtained from the

histograms of A. I determine the value of A, the half-

bandwidth of the modulation, that minimizes the Chi-square

statistic. I likewise fit Equation (1.1781 which assumes

a Gaussian rather than a uniform modulation function

and find aG' the standard deviation of the carrier

fluctuations. Note that-the half-bandwidth of the

modulation as given by l/e of the best fit of

Equation (1.178) is approximately equal to the value of

A obtained from fitting Equation (1.176). The values of

•vz from the A histograms are used because A, as revealed

by Equation (1.7), is independent of a2 and is less

sensitive to its non-stationary behavior. In Table X,

the least Chi-square value of A and aG are given for each

run. Because the frequency stability of both sources

is many orders of magnitude less than v, the modulation

as measured by A or aG can be attributed to the error in

the Doppler position-tracking system. An error of ±.017

m/sec in measuring the velocity of the receiving

hydrophone itself results in a half-bandwidth value for

the modulation of 2.5 mHz at 220 Hz and 4.5 mHz at 406 Hz,

consistent with the values tabulated in Table X. The

velocity error is consistent with the experimental setup
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and the performance characteristics of the Doppler

position-tracking system [31].

In Figures 56-59, the histograms of k, A, and 0 and

the least squares fit of Equations (1.4), (1.7), and

(1.176), respectively, are shown for all the records.

Table XII lists the Chi-square statistics for A and

and Table XIII lists the Chi-square statistics for € when

fit by Equation (A8) (which assumes no modulation),

Equation (1.176), and Equation (1.178). With a few

exceptions, the fit of the theory to the data is

excellent. Of the three runs that failed the Chi-square

test, two were the result of fitting the no-modulation

density, Equation (AS), to $ which, in light of the

foregoing analysis, is suspect from the start. As

Table XIII shows, while Equation (1.176) performed better

than Equation (A8) in five out of the eight runs,.

Equation (1.178) performed better than both Equations (AS)

and (1.176) for all cases except Run 424 where performance

was better than Equation (1.176) but slightly worse than

Equation (AS). In fact, a Gaussian-like error in

extracting the mean phase rate is characteristic of the

Doppler position-tracking system (31].
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TABLE XII

Results of the Chi-square goodness-of-fit test
of j and A to Equations (1.4) and (1.7),
respectively.

Reod Freq. 2 x2 .5AX 2  x2 .ORecord Fq.Hz x:x Xn,.05 -n ,.05

220 1.81 16.92 3.45 21.03
447

406 3.52 23.68 1.86 23.68

220 1.45 31.41 11.61 28.87
448

406 2.61 19.68 4.51 23.68

220 1.65 21.03 1.20 23.68
449

406 2.96 21.03 6.44 23.68

220 2.30 31.41 32.31 28.87
424

406 6.04 31.41 16.38 28.87

A. _

II .. .. .. . .- . .... ... . . .... .. . ..
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TABLE XIII

Results of the Chi-square goodness-of-fit test
of to Equations (A), (1.176), and (1.178).

Record Freq. Eq. (A8): Eq. (1.176): Eq. (1.178): 2 "'05Reod Hz x2 2X :0

220 16.24 3.19 2.78 15.51
447

406 16.54 4.13 1.19 21.03

220 10.57 21.10 7.06 23.68
448

406 22.95 6.84 3.68 21.03

220 5.43 3.26 2.67 21.03
449

406 14.87 7.02 3.67 21.03

220 10.45 23.84 12.07 26.30
424

406 9.78 14.61 12.71 26.30
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3.1.2 Multiple Sources

Because the 220 Hz and 406 Hz sources were transmitted

and recorded simultaneously for each record and were each

quadrature demodulated about their respective center

frequencies and summed incoherently, this affords an

opportunity to check the equations derived in Section 1.2.2.2

for two different sources. For each record, the 220 Hz

source was designated Source one, and the 406 Hz,

Source two. The values for 011 and 02 were obtained

from Hamblen's [91 previous analysis. The values for j2.

and rad2 in /sec &re obtained from Table X. In

Figures 60-63, I have plotted representative results.

In Figure 60 the histograms for X and p are plotted with

the following equations:

SWx) = 12. [ -exp(-2 ] (3.1)
22D =212 L2xP

(p) - P exp(- -) - exp(- 02 (3.2)'22D a 11-a12112)

Equation (3.1) was first derived by Dyer (4], and

Equation (3.2 is simply the transformation 3-x 1 of

Equation (3.1). In Table XIV, I have listed the results of

- - -
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447, plotted with equs (3.1) and (3.2) respectively.
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the Chi-square test and listed the values of ai and v2

used. Note that the theoretical pdf's for these plots

were not fit to the histograms. Also in determining the

Chi-square statistic, I have approximated the area under

the theoretical pdf for each class interval by taking the

value of the pdf at the center of the interval times the

width of the interval. Figures 61-63 are the histograms

for , , and A, plotted with Equations (1.95), (1.114),

and (1.123), respectively.

In general, the amplitude densities perform rather

poorly as expected, while the rate densities perform

exceptionally well supporting the theory in

Section 1.2.2.2. As noted earlier, the non-stationarity

in a'2 discovered by Hamblen [9] in these data, as well as
1

the apparent statistical stability of the rate variables

accounts for the difference in performance of the

amplitude and amplitude rate variables.

3.1.2 Crossing Rate Statistics

Following Dyer and Shepard [15], I have analyzed

the crossing rate statistics for each of the frequencies

of the four records of the Eleuthera experiment. Even

though the "modulation" in these data are very small

(see Table X), the effect on the crossing rate statistics
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is dramatic. From Equation (1.18), I have [15],

G(p 2. P 2v 0  
2

ooexp[- o

and [15],

G( o0) (3.4)

Equation (3.4) assumes no modulation. When the ratio

of Equation (3.3) to Equation (3.4) is taken, v cancels,

i.e. (153,

G(p)0 = (8) P (rO  c (3.5)
G( o ) 01

However, if the source is modulated or has a finite

bandwidth (i.e., B > 2v), then in fact v does not cancel

when the ratio of the two is taken:

(8 )0 'A pi (p) a (3.6)

G( 0) V$ P 0

where vA signifies the value of v obtained from the

amplitude densities, and v* the value of v obtained from

fitting Equation (A) (which assumes no modulation) to the

histogram of € of a modulated source. This is tantamount
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to assuming that the pdf for M is such that Equation (1.165)

yields the Longuet-Higgins density with a larger

v E v* > VA. If there is no modulation of the source
0 A

and B << 2v, then vA =v' (as will be shown in Section 3.2).

For the data of the Eleuthera experiment, however,

V # V because of the error in the Doppler position/trackingvA  t

system. The ratio VA/v* can be considered a correction

factor to account for modulation effects in crossing rate

statistics. However, because the error in extracting

the mean phase rate is more Gaussian than Longuet-Higgins,

as demonstrated quite convincingly by the performance of

Equation (1.178) on the histograms of 0, I have also

computed the correction factor, using the analysis of

Section 1.3.3, given by Equation (1.209). In Table XV,

I have compiled the correction factors given by vA/V* ,

and Equation (1.209). I obtain VA/V; by taking the ratiolA

of v from A to v from given in Table X. For

Equation (1.209) a., and v (from A, converted to mHz) are

likewise obtained from Table X. In Figures 64-67

reproduced in part from Reference (151 I have plotted

the new curves applying the VA/V*, and Equation (1.209)

correction factors. Note that because the correction

factors are a function of v and parameters of the

modulation there is one curve for each frequency. The
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TABLE XV

The correction factors to the unmodulated
value of G(P )/G(O ) for the Eleuthera
experiment, Based 8n the ratio of vA
(from A, Table X), to v* (from $,
Table X), and a GaussiaA frequency
modulation assumption.

Record Frequency VA/V, Eq. (1.209)

220 .65 .41
447

406 .72 .44

220 .84 .56
448

406 .65 .40

220 .78 .47
449

406 .69 .42

424 220 .86 .58

406 .79 .54
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Fig. 64 Ratio of phase period to amplitude period, versus amplitude,
for record 447. Equ. ( 3.5 ) is the theoretical ratio for a
non- modulated narrowband source. The correction factors

"A / r/ (Table X), and Equ. (1. 209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220 Hz and
406 Hz accounting for the modulation.
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Fig. 65 Ratio of phase period to amplitude period , versus amplitude
for record 448. Equ. ( 3.56) is the theoretical ratio for a
non-modulated narrowband source. The correction factors

v/ (Table IV, and Equ. (1209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220Hz and
406 Hz accounting for the modulation.



-239-

3.5

3.0 -qu. (3.5) RECORD 449

x 0 220 Hz

2.5 - x Q  ,x x 406Hz
x 220 HZ ( vA/u )

A 2.0

000

.0X 4Hz Gauss cn

0

05 1.5 2.0.,5 406 HZ (3A/.54)
l ,e'°% -"" ' ' 406 Hz Gaussian

1.0 - N

p0

0.5 -, a( sa
x

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Po

Fig. 66 Ratio of phase period to amplitude period, versus amplitude,
for record 449. Equ. ( 3. 5) is the theoretica I ratio for a
non-modulated norrowbond source. The correction factors
vAlv (Table XZ}, and Equ. R I 209 ) ( Gaussian modulation) have

been applied to obtain the corrected curves for 220 Hz and
406 Hz accounting for the modulation.

I;



-240-

3.5

3.0- RECORD 424

Equ. 3.5)a 220 Hz
2.5 -'406 Hz

220 Hz (VA/V )
A 2.0-

1.5 -0 \220Hz Gaussian
X,/ x E 406 Hz Gaussian

1.0- x1

0.5-

0 0. 1 ~ '~ 1
05 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Po

[2P0 >1g 1/2

Fig. 67 Ratio of phase period to amplitude period, versus amplitude,
for record 424. Equ. (3.5) is the theoretical ratio for a
non-modulated narrowbond source. The correction factors

(Tav4 ble M), and Equ. (1.209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220 Hz and 406Hz
accounting for the modulation.
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bracketed <G( 0 )> indicates that an average value of

G(0o ) has been used. The range of values results from

restrictions placed on the maximum value of 1 as a

consequence of phase unwrapping routines. As indicated

in the figures, p0 has been normalized such that the

E[p 2 ] - 2. Details of the above and other aspects of the
0

data reduction can be found in Reference [15].

The corrected curves are a dramatic improvement

over the Dyer, Shepard theory. Except for run 424 where

the Gaussian performs much better, the Longuet-Higgins

and Gaussian curves perform about the same with the

former tending to be slightly high and the latter

slightly low. The variance in these results only

indicates our uncertainty in the exact nature of the

modulation in these data. The important results are as

follows: (1) The modulation theory discovered the

heretofore unnoticed modulation in these data,

(2) accounted for its effects on the histograms of 0,

and (3) correctly predicted the crossing rate statistics

completely explaining the consistent over prediction of

the Dyer, Shepard theory.

3.2 The CASE Experiment

Data from the CASE experiment [131 were analyzed in

!
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order to compare the theory to data in which the

modulation is known and controlled. Three configurations

were used: (1) fixed source on a seamount, (2) source

towed by a surface ship, and (3) source mounted on a

submersible. The signals were monitored at four widely

separated fixed deep water receivers at ranges varying

from 200 to 400 km. Runs from one of the receivers had to

be subsequently rejected due to an extremely low signal to

noise ratio. Two carrier frequencies were employed, one

at 15 and the other at 33 Hz. The signals were frequency

modulated by a pseudo-random function generator with an

average period of 107 sec and an overall pattern that

repeats itself every 640 sec (see Figure 68). The

bandwidth of the modulation is pre-selected, and for the

runs analyzed is either 0 (no mcdulation), 1/8, 1/4,

or 1/2 Hz.

A total of 88 runs of 15 min duration each was

analyzed. From the filtered digitized complex data, time

series and histograms were generated for A and ¢. As

before, Equations (1.7) and (A8) are fit, respectively,

such that the value of v2 obtained minimizes the Chi-

square statistic.

Of the 88 runs, 12 were not modulated and the values

of v obtained from A and for those runs agree (run by rzn)
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to within approximately 10%. In Table XVI, I have listed

these values as well as the range frequency and receiver

number for each run. For all of these runs, the source

was fixed on the seamount. For 9 of these 12 runs, the

quadrature components exhibit significant nonzero means.

During the data reduction these means for all the runs

analyzed regrettably were removed. However, runs 76-77

had no significant means and the values of v are

consistent with those from runs 66-68 which are at the

same frequency. It appears that extracting the means

even when significant (and this was true only for runs

66-68, 71-73, and 113-115) is a negligible factor.

However, runs 113-115 do in fact contain the largest

three values of v obtained for all the 15 Hz runs and are

perhaps suspect, though other runs with insignificant

means also exhibit values of v approaching and exceeding 1.

For the remaining 76 runs, 24 were modulated with a

1/8 Hz bandwidth, 35 with a 1/4 Hz bandwidth, and 17 with

a 1/2 Hz bandwidth. As expected with modulation, the

value of v2 obtained from fitting Equation (A8) to the

histograms of ; were larger than those obtained from

by large factors depending upon the bandwidth of the

modulation. Because the modulation pattern (Figure 68)

is approximately a saw-tooth and the spectrum of the
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TABLE XVI

The values of ' obtained from the 12 non-
modulated runs analysed in the CASE experiment.
In addition to being non-modulated the source
was fixed on a seamount.

Case Freu. v (rad/sec)
Record (rz Range (kin) RCVR

66* 33 .094 .104 250 1

67* 33 .353 .354 320 2

68* 33 .191 .194 450 3

71* 15 .407 .421 250 1

72* 15 1.186 .982 320 2

73* 15 .741 .727 450 3

76 33 .042 .044 250

77 33 .154 .147 320 2

78 33 .106 .096 430 3

113* 15 1.349 1.208 250 1

114* 15 1.495 1.272 320 2

115* 15 1.279 1.084 450 3

*These runs showed significant means in the quadrature

components.

I V
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modulation (Figure 69) is approximately uniform, the

analysis of Section I.B is applied.

Equation (1.176) is fit to the histograms of

using the value of v2 obtained from fitting A and varying A

such that the Chi-square statistic is minimized. The value

of A is then compared to the actual signal bandwidth set

by the experimenter. In Figure 70 the error in percent

is plotted against the number of runs that exhibit a given

error. For the 76 runs with modulation, the average

error in determining the bandwidth of the modulation by

this method is 8%. Predictive ability appears to be degraded

somewhat when the oceanic fluctuations are of the same

order as the bandwidth of the modulation, i.e., when

v % A the average error was 17%. It should be remembered,

however, that the modulation is not exactly uniform and,

therefore, using Equation (1.176) is an approximation

to begin with, and this approximation is worst when v ^ A.

Finally, I note that the error is consistently negative,

i.e., the foregoing method undarpredicts. The reason

for this is unknown.

Performance on the Chi-square test was also quite

good. All 88 runs passed at the a= .10 level of

significance when Equation (1.7) is fitted to the

histograms of A. In fitting Equation (1.176) to the

a.,."A
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histograms of ; for 76 runs with modulation, only 2 runs

fail. For the 12 runs without modulation, only 1 run

fails when Equation (A8) is fit to the histograms of .

The fit of Equation (A8) to the 76 modulated runs is as

anticipated extremely poor; 29 of the 76 runs failed

and those that passed did so by a very small margin.

In Table XVII, I have compiled the values of v

(from A), A, actual A, range, range rate, source

configuration, frequency, and receiver number for each of

the 76 modulated runs. Under source configuration C

indicates fixed on the seamount, T indicated towed by a

surface ship, and S indicates mounted on a submersible.

Figures 71 and 72 are representative of the

modulated runs when A >> v. Figure 71 shows the time

series and histogram of A and the best fit of

Equation (1.7). Figure 72 includes the time series and

histogram of ; and the best fit of Equation (AS) and

Equation (1.176). Reference (331 contains the plots for

all the runs as well as the FORTRAN listing of the data

analysis program for the CASE experiment.

Comparison of v2 from the CASE experiment with the

Dyson, Munk, and Zetler model 11 is unfavorable. The

values of vA obtained at 15 Hz are, in fact, greater than

those obtained at 33 Hz, contrary to the frequency scaling

.... ... j
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Fig. 72 The time series and histogram of for the same
run shown in Fig. 71 is plotted along with the best
fit of equation (A8) which assumes no modulation
(a) and the best fit of equation (1.176) which
includes the effect of source induced modulation (b).
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proposed in their model, and these values are in turn

several orders of magnitude greater than the values

predicted by the model (see Table XVIII and Figure 73).

However, the rms single path phase fluctuation for the

frequencies and ranges of the CASE experiment as predicted

by an internal wave model only, appear to be << 27, and if

so, the model would not be applicable to the CASE data.

In order to obtain a very rough estimate of applicability,

Equation (118) (for small $), Reference [34], has been

plotted in Figure 74 for <¢ 2> = (27) 2, for range in km

vs. frequency in Hz. That portion of the figure above

and to the right of the line indicates that phase

fluctuations due to internal waves are > 27. The dotted

lines represent the CASE experiment, the circles

represent the Eleuthera data. Despite the assumptions

involved, the good results of DMZ with the Eleuthera

data (Table XI), and the poorer results with CASE, could

be explained by Figure 74. It is apparent that some other

mechanism must account for the fully saturated phase

random process evident in the CASE experiment. Other

possible mechanisms could include range rate, other ocean

dynamic phenomena such as Rossby waves or meso-scale
eddies, tidal currents magnified by bottom interaction

at the receiver location, or rough scattering effects.

-~ . . -.- ..-.-. .-.
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TABLE XVIII

Comparison of the average values of v obtained from
the CASE experiment to the predictions of the DMZ
internal wave model. Also shown are the variances for
the values of v obtained from CASE.

(mHz) Variance of
Case ,

DMZ CASE j C za )

1 .08 38* 53 35* 55Freq.
(Hz) 33 18 19 +  20 14 +  15

*These values were computed leavina out runs 71-73 and 113-115
that exhibited significant ncn-zero means in the quadrature
components.

+LThese values were computed leaving out runs 66-68 that

exhibited significant non-zero means in the quadrature
components.

- ~- --
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of the graph above and to the right of the line is the
fully saturated region based on internal wave models.

The CASE experiment is indicated by the dotted

lines and the Eleuthera data by the circles.
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Although no strong correlation was found between v

and range rate, it is apparent from. Figure 75 that the

larger values of v were obtained at 0 range rate. I also

investigated other correlations. I found none between

v and range, or time of day (see Figures 76 and 77

respectively). Because the CASE experiment was run over

approximately one and one-half months with experimental

runs occurring on many different days, tidal effects

cannot be inferred from the times. At the present time,

the dates of each of the runs are unavailable, making

tidal checks impossible.

In Figures 78 and 79 I have plotted the values of

v vs. receiver for 15 Hz and 33 Hz respectively. Because

each receiver was monitoring a given experimental run

simultaneously I have connected the values of v at each

receiver by lines for each run. The time of day is noted

to the left of the receiver 1 values. An "N" next to

the time indicates that there was no range rate, either

the source was fixed on the seamount or motionless for

that run. For 15 Hz (Figure 78), receiver 2 consistently

sees a higher value for v than receiver 1, and receiver 3

consistently sees a larger value than receiver 1. Between

receivers 2 and 3 the results are mixed. For 33 Hz

(Figure 79), receiver 2 consistently sees a v greater than

- ;F .. . . . ... .L ... . ... , , ... . _ . . . . . ... ... ..-..... .. . . .. .- .. _ ,-,,,T . -
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receiver 3. For 8 of the 12 runs, smaller values of v

are seen at receiver 3 than are seen at receiver 1.

Between 1 and 2 the results are mixed. These results

suggest the possibility of rough scattering or a tidal

current phenomena which would be receiver dependent.

Note, however, that the no range rate runs ("N") for

both frequencies all exhibit the same pattern, with

low values at receiver 1, the highest values at receiver 2,

and low values again at receiver 3. For all receivers

range rate groups v at lower values than the no range

rate runs, the latter having a consistently higher mean.

Thus, as observed earlier (Figure 75), there does appear

to be some small correlation with range rate to the extent

that either there is range rate in which case v is

independent of the amount, or there isn't, in which case

v exhibits a higher mean and variance. This is more

graphically illustrated in Figures 80-85 in which I have

plotted v vs. range rate now separating the values by

receiver as well as frequency.
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DISCUSSION AND CONCLUSIONS

The major contributions of this thesis are twofold.

First, on the theoretical front the understanding of

the statistics of acoustic signals propagated to long

ranges in the ocean has been significantly advanced by

the derivation of many new pdf's, particularly for the

rate variables and joint pdf's of amplitude and amplitude

rate, as well as the theoretical development of the effects

of modulation. Second, the application of this new

theory to ocean acoustic data has revealed new

understanding of the effects of finite bandwidths and/or

modulation on the statistics, as well as a clearer picture

of the limitations of current models relating v2 to ocean

or experimental phenomena.

To be more specific, the completion of the family of

pdf's for the single source and particularly the derivation

of P-(A) has permitted direct measure of v2 from amplitude

quantities which are independent of bandwidth and/or

modulation effects. However, more research is needed to

understand the effects of no- stationarities in 2 on the

amplitude and amplitude rate pdf's. Although oj does not

appear explicitly in P(A) , non-tationarities in c- will

possibly have some small effect. The effect, however, will

be related to the rate of change of $2 and not to the
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absolute change which would affect those variables in

which a2 appears explicitly, so that measurement of vZ via

is the preferred method.

The Eleuthera data analysis reveals that for

measuring vz use of the time series and histograms of ¢

and Equation (A8) apply only when B< <«2 ,, A<< , and the

Doppler shift due to relative source/receiver motion is

<< 2v. It is true that relative source/receiver motion

induces Doppler modulation, which is path dependent as

each path has a different arrival angle at the receiver.

However, in forming A, or, in fact, any of the amplitude

or amplitude rate variables, the mean Doppler is removed

and it is only the path to path differential Doppler that

remains. For , however, the mean Doppler as well as the

differential Doppler contribute, and naive use of

Equation (A8) on * will result in error. Even when the

mean phase-rate is removed, as was done with the Eleuthera

data, we discover that a new criterion must be met, namely

that the error in removing the mean phase rate must be

<< 2v.

Recognition of the A method of measuring vz is alone

one of the major contributions of this research. However,

a more thorough analysis is in order to determine the

effect of the differential Doppler on the pdf's of

1A
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amplitude, amplitude rate, and phase rate when there is

relative source/receiver motion. Because arrival angles

are small for long-range propagation, it is anticipated

that this effect will be small if not negligible in most

cases. For the Eleuthera data, the mean drift rate along

the transmission path was on the average 100 m/hr [12].

Assuming a maximum arrival angle of 140 the maximum

differential Doppler shift is 1 x 10- 4Hz at 220Hz and

2 x 10- 4Hz at 406Hz, an order of magnitude less than 'j

for these data. For the CASE data, the differential

Doppler was also negligible for all the runs analyzed.

In addition to range rate, other mechanisms which

affect the value of vZ must be researched. Analysis of

the CASE data revealed that some mechanism other than

internal waves must account for the fully saturated

phase random nature of the data. My preliminary

correlations indicate that a receiver related phenomenon

such as slope-influenced tidal currents, or rough

scattering, would be a good place to start. However, other

mechanisms including Rossby waves, meso-scale eddies, etc.

cannot be counted out. I must confess to some feeling of

uneasiness surrounding the great run to run variance of

the measured values of v' in the CASE experiment. Clearly

a mechanism of some temporally varying nature must be
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accountable. This again points toward a tidal phenomena.

The Eleuthera data reveal a temporally stable v 2, even

more so than Hamblen (91 discovered, because his

analysis includes what is now recognized as a Doppler

error.

The analysis of effects of finite bandwidth and/or

modulated signals coupled with the new confidence in

obtaining v2 minus these effects has revealed a

potentially powerful technique for separating source and

ocean effects in the received signal. This technique

uncovered the effect of the Doppler error in the Eleuthera

data with great improvement in crossing rate predictions,

and predicted the bandwidth of the modulation of the CASE

data with an average error of 8%. This technique could

be refined by use of more sensitive statistical tests

such as the Kolmogorov-Smirnov test. Also the pdf's for

many different kinds of modulation could be tried, not

only to determine such parameters of the modulation as

its bandwidth, but also the nature of the modulation

itself when it is unknown, by comparing the performance

of the selected densities on the histograms.

Aside from the applications of the amplitude

statistics to distant shipping noise problems [4,51 the

analysis of the statistics of multiple source cases is a
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relatively untapped reservoir especially for the rate

statistics. In order to improve predictions in the tails

of the densities whose exact solutions remain unknown,

the Chernov bound or "tilted" density [25) approach

mentioned earlier should be investigated. I believe,

however, that the analysis presented is complete enough,

and the problems remaining few enough to warrant

investigation into the applications of this analysis. The

coherent source analysis may be a reasonable model for

determining the statistics for the signal plus ocean

noise. The multiple source cases analyzed may well be

applicable to other noise problems. Table III provides

a comprehensive summary of the state of this analysis

at the present time.

The analysis contained in Appendix C, relying on

some results of earlier investigators in fields other

than acoustics, completes the solution of the statistics

for the amplitude for N < 3 paths. For N > 4 1 have

shown with the computer simulation that limiting pdf's

suffice. More research is needed into the exact nature of

P; (9n), the pdf for the single path phase. As

previously noted by Hamblen (91 and as supported by the

analysis in Appendix C, the rate densities of amplitude and

multipath phase for N small cannot be found unless P C)
n
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is known. No investigators to date have related, to my

knowledge, any knowledge, experimental or theoretical,

about P (en) aside from the usual Gaussian or uniformn

assumptions as I have done. In Appendix C I have

solved for P;(k) when N = 2 paths making these
x

assumptions.

In summary, the theoretical analysis of long range

acoustic propagation presented in this thesis has been
Wj+ cLdc.. 4-rowtoan a ous- c xrir

supported by both computer simulation and comparison \with

extremely satisfactory results. I hope that the analysis

presented and the conclusions reached will be of use to

other researchers in the future.
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APPENDIX A

FIRST ORDER DENSITIES FOR THE
S INGLE NAPRROWBAND S OURCE

Assembled below are the pdf's associated with a single

narrowband source and their characteristic functions 114.

Notation:

P (X) is the pdf of random variable X

:4 X(w) is the characteristic function of X

U X is the expected value or mean of X

a2 is the variance of XX

e = 10 logi0 e - 4.34...

A. Amplitude Densities

(1) P (p) = -r exp[- -a1 , > 0; Rayleigh (Al)
1I 2a2

Pp = a21 ,"7,o" = a(2 - 7/2)

W2 2

M (M1 = exp(- 4 1 ) D-2 (-iwa l )

where D (z) is the parabolic cylinder function [241.
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(2) P X = 1 exp[---- , x> 0 ; Exponential (A2)

=X 2a , a2 = a

1
X

M (W)=
X 1 - i2al'w

(3)_=_1 A 1 A
(3) PA(A) - exp[l - exp( I

2r:a 2 2a 2

Log-Rayleigh (A3)

= Cln 2a- y] a2 =z 7 2

MA(w) = (2a2)iew r(i + iew)

where y = Euler's constant = .5772...

r(z) is the ganma function 241.

- - ---~ -- ----
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()PUniform (A4)

~ = :0 otherwise

B. Amplitude Rate Densities

(5) p(* expf- Gassa
P /~*~*~2~2- 2a2v2  assa

(A5)

0 ,al av7

12 12
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(6) P.(X) exp- ] , -c<c< ; Laplace (A6)
X4va2 2z~v

i.=0, a~=8a4V2x x 1

X 1 + 4,i2,4,z

(7) P-()=32,-<< Longuet-Higgins

(A7)

A

21 =

M. (w) 2 vjcuKj(2vH)

where K (z) is the modified Besse! function of order one.
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(8) For no modulation only:

1/v
7 3/2 'in<w;Longuet-Higgins (AS)

*2(1 + (

M;(w) -vIWIK 1(vIWI)
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APPENDIX B

THE ERLANG AND RELATED PDF's

The Erlang pdf (Equation 1.19, Section 1.2.1.1) was

derived by A. K. Erlang in the early 1900's in connection

with waiting times in telephone operations. It is the

thprobability of the time until the n arrival in a

Poisson process, or the density of the nth order inter-

arrival time E35]. Note that the first order

interarrival time (L=) is an exponential pdf. L can be

extended to include noninteger values by merely replacing

the factorial of the Erlang with the r function and hence

the name gamma pdf. Although mathematically valid, the

simple physical interpretation of the Erlang breaks down

when noninteger values of L are introduced. In the case

of distant-shipping noise, L is an integer.

In the language of queing theory, it is interesting

to note that determination of the pdf of X for Case (c)

of Section 1.2.1 in all its generality is the same as the

solution for the pdf of the nth order interarrival time

in a renewal process in which the first order interarrival

times are independent random variables distributed

according to Equation (1.19) with different ui and Li .

Though originally derived independently, the

slightly less general chi-square pdf with n degrees of

I I__I_--,___. . ..._'___,______,.-_T_-



. . .- ........

-289-

freedom can be derived from Equation (1.19) by merely

letting a - 1/2 and L - n/2 EL4.

If we let a - m/ x and L - m, and make the

transformation R - X1/ 2 in Equation (1.19), we have the

density of the short time rms pressure:

P (R) 2mmR2m-l e-(m/X) R2  (BJ)Rm r (m) i

In terms of the statistics for x, m = (ux±/ax)2, which is

the inverse of the normalized variance of X.

Equation (Al) was first proposed by M. Nakagami in

1943 [ 7] to describe the envelope of long range h.f.

radio wave propagation undergoing rapid fading and is

known as the "m" distribution. When m-1, Equation (Bl)

is the Rayleigh distribution as expected. One can note

that the phase-random model of long range acoustic

propagation is analogous to the rapid' fading of long range

h.f. propagation. Thus, the connection between the "m"

and Erlang, or gamma pdf, is more than just a functional

similarity; they describe in alternative language the same

process.

A __ ___ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___iI



-290-

APPENDIX C

THE STATISTICS FOR N < 3 PATHS

The solution for the pdf of the amplitude of a vector

which is the sum of many vectors added with random phases

has been a problem of long standing interest. Lord

Rayleigh was probably the first to investigate this

problem in two papers, the first published in 1880 (1],
and the second in 1899 (36]. He was, however, concerned

with the limit when the number of summed vectors is large,

and he derived the density of the amplitude for this

limiting case which bears his name. The first investigators

to tackle the problem of small N (note that the

characterization of summed paths as random vectors is

mathematically identical) was Kluyver (1905) [37], and

Pearson (1906) (38], the latter in connection with mosquito

migration!

For arbitrary N and unequal amplitudes, Ai, Kluyver

(37] obtained the general solution in integral form as

follows:

= N

MP() P W Ju J0 (up) 11 Jo (uA)du (CI)

i-l

For the problem of sums of independent multipaths, we have

that Ai r for all i and thus:
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aoNP P(P) " U J o(Up)[jo Ur)] N du (C2)

Pearson (38] obtains solutions of this equation for N-2,3

and for N> 4 he obtains solutions in terms of series of

Bessel functions.

C.1 Solution for N - 2

Though I derived this solution independently, it was

Pearson [38] who obtained it first. For two

paths I have for the quadrature components:

X = r(cosO1 + cose2) (C3)
Y - r(sin81 + sine 2)

where 81 and e2 are independent random variables distributed

uniformly between 0 and 2r. Forming the sta mean square

pressure X from Equations (C3),

X = r2(cos28 1 + 2coslcosG2 + cos 282 + sin2el

+ 2sin 1 sine2 + sin 2e 2) (C4)

Using some trigonometric identities I have

x " 2r2 + 2r2cos(e1 - e2) (CS)

Taking advantage of the symmetry of the cosine the random

variable defined by 91-82 behaves as if it were uniformly

distributed between 0 and r. Thus, forming the cumulative

distribution function:

-- ff -
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,s-2r
2 )

< W de, 0 < 9 < (C6)

0

and

2 Px(X) " 2 (C7)

I obtain the final solution:.

2P(X) = X 4<, 4r 2  (CS)

where,

-2r 2 ' a2 -2r 4

x x

Making the transformation to p and A:

2P (0) 2 . (C9)
-4r2-2 , 0 <p < 2r (9

p /r 2 -P 2

lip - 4r/, a 2  r 2 (2 16/n 2)

and, A/2c
S(.) - - < A < 2ein2r2 PA(A) - € /4r2_eA/'C

IA - 2etnr, 2 =2[ 2 [/6 2(Znr) 2 (CI0)

IA A A 7r/

From Equation (CS) I have

- 2r2( 2 - e1) sin(9 1 - e 2 ) (CI)
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It is clear from Equation (Cll) that for small N exact knowledge

of P& ( n) is required before rate densities, or joint

densities of amplitude and amplitude rate can be found.

I will now perform the calculations required to

find 2 P(x) assuming Pin(6n) is Gaussian and then assuming

Psn- ) is uniform. For the former:

n 
2

p; (n) 1 e 2, Inl < (C12)en 2 'v

The pdf for t - sin (1- 82) is given by

Pt(t) - , Itl < i (C13)

The pdf for z - - i1 is by inspection

z
2

P i ) = " e , Izi <- (C14)

Because z and t are independent random variables the joint

density of z and t is the product of Eqns. (CU3) and (C14).

I seek the pdf for the product u - zt, and explorting

symetry,

PulU) 1 f P z,tz't) dzdt (C15)U aufo O Z'O
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Differentiating under the integral sign I obtain

u 2

(U) o -1 -t 2 2  dt (C16)

I now make the change of variable ul - u2 and then integrate

and make the final change of variables = Zr 2 U to obtain:

2r v ( 034r"7r v/3 3232

<i (C17)

where Ko(W) is the Modified Bessel function of order 0.

For n uniformly distributed

P~n(n)  (2 u en'< /5 V

i 2v n (C18)
0o elsewhere

Note the factors in Eqn. (C18) insure E[6n 2  V2 as required.

Now the density for z - e2 is

i 1  - I' ' zI < 223v

PZ W 2-v (C19)I aelsewhere

The pdf for t - sin(91 - 2 ) is given by Eqn. (C13).

Defining u = zt I integrate over the joint density as

before. The integration is non trivial and requires

A _ _ _ _ _ _ __ _ _ _ _ _ _ _
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careful concern for the limits:
~ lju/t

PU(u) I [n P (z't)dzdt

, U

2 /3v

u/2 Vt( 2 Y

, (zit) dzdt (C20)

In each case I perform the integration over z first and then

differentiate under the remaining integral, and integrate.

After making the final change of variables X = 2r 2 u I have:

- . F+ ~ 4 2 )

4r V~vj

i ~ 2-

-2 1 -4- i < 4r 2 / -v (C21)
4-" -r3

C.2 Solution for N4 - 3

For this case following Pearson (39],

A ____....___. ..____,,_...__.______... ...._,,
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irrr

P (P)2 r( ~ < r < 3r (C22)

0 , elsewhere

- where 3, 16ro
" a~~~C2 M, l'3..

(p+r) (3r-P)

and K(2 , a) is the complete elliptic integral of the first

kind. Note that numerical integration is now required to

obtain the moments.

Transforming to X and A:

1
3. ), < X < r 2

22 r3/2 x1/4'B

1. r 1 2 <X 2
3 P(x 2f 7r 2) r 3/ x 7 < 9r

0 , elsewhere

. . .(C23)
where

2 16r3 1/2

1/ +-r) 3 "r - 1/2
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and lastly,

exp C-)

YK (,Y), < <A < 2eZnr

3A
exp()

3 PA (A) 2'~ r! . 2e9.nr < A < 2eZn3r (C24)

', elsewhere

where

6r3- A2~ exp(T-.)
Y2 S

[exp( A + r]3 D - x(A
tier - Tx(-~)

The rate density for x ,or A assuming a P;nO)

are sufficiently more complicated than IV = 2 that I have

not solved for them.

c.3 Computer Simulation

Figures Cl-C9 are histograms of th e computer

generated samples of the amplitude variables for N. - 2,3,

and 4 paths. The exact pdf for Ut 2, and 3 is shown with

the limiting pdf. Note that for Al 4 the performance of

the limiting pdf is good enough (see Table V for Chi-9quare
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test results) to warrant use of the limiting forms for

N >4. In Figure Ci0, I have plotted Equation (C21) with

the histogram of for N = 2 (recall that the computer

simulation assumes P; (;n) is uniform), as well as the

limiting pdf, Equation (1.4).
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APPENDIX D

AMPLITUDE PARAMETER VARIATION

In this appendix I will briefly introduce the analysis

involved in amplitude parameter variation. This analysis

is the first step towards understanding the statistics

of received signals that are either nonstationary in r

or a , or when r or a2 is purposely modulated at the

source.

For the first case, I consider that r is a random

variable distributed uniformly between a lower limit of

b > 0, and an upper limit of a > b. It is evident from

Equation (2.1c) with L-1 that

PAV = rp (DI)

where now p can be considered a random variable, distributed

Rayleigh according to Equation (Al) but in which

- N/2. Note, however, that there is an implied

assumption that N > 4. From Equation .(Dl) and the fact

that r is a measure of the gain of the signal which can be

controlled at the source, or of the change in pathwise

signal strength, it is true that r and p are independent

random variables. This assumes of course that during the

experiment the number of paths remains constant. Thus,
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forming the joint density of r and p I obtain the

cumulative distribution function,

PAV PAV

<PA (PAV f 1 J J P exp(- -2 !)drdp

<A AV (a- b)a2 2a 11 0AV b
a

PAV

+. 1 f 1  p exp( 2~rd (D2)
(a-bWa2 f 2a 1

Performing the integration and taking P<- AV
7AV AV

I obtain the final result:

P (AV Tr 1 Erf(- Erf( PAV
V AV (a- b) a2 L a ro1  aa V-J

(D3)

-(a +b) a.ir F2 b 8 a0OAV 22 PAV a1  3 3ab)

Note that when a- b- r,u and a assume their no
PAV PAV

variation values (see Equation Al, Appendix A), and
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likewise,

Jlim. P (P AV ) P (P)
a-or AV

With the appropriate transformations, I get:

P ( (XAV) [Er- Erf(- (D4)
XVba /2- aa 1 /V7

exp (- exp 2

-Erfix ,, (D5)
La a I YJJ

Note: a N/2 in Equations (D2-D5).

In order to compare the effect of certain levels of

uncertainty in r on the pdf for p, the following

procedure must be employed. Given that r is uniformly

distributed between b and a, its average value is a+b/2.

Plot Equation (Al) with ia f a--2b 2n hnpo

Equation (D3). If this is not done, then one may



-312-

erroneously conclude that the effect of uncertainty in

r is quite dramatic when in fact it is not!

I have taken various values of a and b such that

a+b . 1 and plotted Equation (Al) with Equation (D3) in
-

Figure Dl. Note that with 50% (3dB) uncertainty in r,

the variation from Equation (Al) is not terribly

significant; however, for uncertainty > 50%, the effect

becomes very noticeable in the pdf. In Figure D2 I have

plotted Equation (A3) with Equation (D5). As before

with 3dB of uncertainty, the effect is small. However,

for A. 7dB or greater uncertainty, the effect is large and

in fact is very close to the limiting form (100% or

-dB uncertainty). Nakagami [7] obtains a similar result

in relation to uncertainty of the mean intensity in

dB of multipath RF propagation. In obtaining the

limiting pdf (i.e., 100% uncertainty), it is necessary to

let b=0 and a=2r in Equations (D2-DS) (note, Erf(-) =1)

and rewrite the equations analytically first, otherwise

considerable computer time and/or overflows will result.

Next, I assume r varies sinusoidally about a mean

given by a and an amplitude of b. Thus,

P (r) 1 , -r-al < b
(r -a -

I-
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The cumulative distribution function is given by

PAV PAV

P<pAVAV) 1 raT : exp( - )drdp

PAV a-b

- ab

+ i Ja+b J exp(- P 2-)drdp
* IS1-2 r) 2a,

0 a-b

.(D6)

Integrating, and differentiating with respect to p AV and

simplifying as much as possible, I obtain

P AV (P AV - exp A
PAVAV (a -b) 2 172aa-

P V 2

+~Jexp(- V~k + =- 2 aAV - dy
f A V+ . P A V V

. . .(D7)
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Unfortunately, the analytical solution to

Equation (D7) has not been found. For the special case

Jwhen a=b, however, the analysis can be concluded:

I

(P (p) v-) exp(- V
PAVAV 4a 2V a1 2ax( 16a1

La D 0AV + PAV (D8)1o 3D 2a. A)( -a.D
1 1

where D (z) is the parabolic cylinder function. As a

check, the integral of Equation (DS) over pAV from 0 to

is, in fact, 1.

As a final example, I consider the case in which we

allow a' to be a random variable and Equation (Al) to be

the conditional pdf of p given a. Allowing 2 to be1 1

uniformly distributed between b and a, and applying Bayes

Theorem, I get:

a p2

PAV(AV a- b exp(- --- (D9)

P AV__a__2___1

AI

-w _ .
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then:

P P~A~ AV [E PAV E AV 1(D1O)
PAV (PV i-S r- 1 2S)

where E 1 (z) is the exponential integral. Applying the

identity (18]:

E (z) - -Y -lnz- n -- (jargzj < To
1 ~ n-l 1 I

where y is Euler's constant -. 5772... I obtain

P PAV J a n AV 1
PAV AV _S 1 n 4 F (-1 ns nn!

Although I did not plot Equation (Dli), the numibers I

obtained for relative levels of uncertainty in a2 agree
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closely with the results of uncertainty in r, and the

effect of a2 randomization (i.e., < 3dB uncertainty) on

the amplitude densities appears also to be small while

limiting forms are obtained for uncertainty > 7dB.

A more thorough investigation of this phenomena

could uncover the statistical dependencies on

identifiable non-stationarities, such as propagation

loss due to changing ranges or other oceanic or

experimental factors which result in the temporal

dependence of r or a2. The effects on the statistics

can then be analyzed using the procedures employed above.

I ______________ _______,1
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